首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3944篇
  免费   284篇
  国内免费   2篇
  2023年   23篇
  2022年   41篇
  2021年   100篇
  2020年   61篇
  2019年   70篇
  2018年   107篇
  2017年   78篇
  2016年   132篇
  2015年   202篇
  2014年   194篇
  2013年   263篇
  2012年   329篇
  2011年   309篇
  2010年   199篇
  2009年   172篇
  2008年   269篇
  2007年   209篇
  2006年   235篇
  2005年   157篇
  2004年   165篇
  2003年   148篇
  2002年   140篇
  2001年   58篇
  2000年   52篇
  1999年   46篇
  1998年   34篇
  1997年   32篇
  1996年   26篇
  1995年   29篇
  1994年   24篇
  1993年   16篇
  1992年   29篇
  1991年   29篇
  1990年   20篇
  1989年   17篇
  1988年   18篇
  1987年   13篇
  1986年   10篇
  1985年   14篇
  1984年   13篇
  1983年   11篇
  1982年   13篇
  1981年   10篇
  1980年   13篇
  1979年   14篇
  1975年   9篇
  1974年   16篇
  1973年   10篇
  1972年   6篇
  1971年   7篇
排序方式: 共有4230条查询结果,搜索用时 15 毫秒
161.
MDC1 (NFBD1), a mediator of the cellular response to DNA damage, plays an important role in checkpoint activation and DNA repair. Here we identified a cross-talk between the DNA damage response and cell cycle regulation. We discovered that MDC1 binds the anaphase-promoting complex/cyclosome (APC/C), an E3 ubiquitin ligase that controls the cell cycle. The interaction is direct and is mediated by the tandem BRCA1 C-terminal domains of MDC1 and the C terminus of the Cdc27 (APC3) subunit of the APC/C. It requires the phosphorylation of Cdc27 and is enhanced after induction of DNA damage. We show that the tandem BRCA1 C-terminal domains of MDC1, known to directly bind the phosphorylated form of histone H2AX (gamma-H2AX), also bind the APC/C by the same mechanism, as phosphopeptides that correspond to the C termini of gamma-H2AX and Cdc27 competed with each other for the binding to MDC1. Our results reveal a link between the cellular response to DNA damage and cell cycle regulation, suggesting that MDC1, known to have a role in checkpoint regulation, executes part of this role by binding the APC/C.  相似文献   
162.
Obesity and type 2 diabetes constitute leading public health problems worldwide. Studies have shown that insulin resistance affiliated with these conditions is associated with skeletal muscle lipid accumulation, while the latter is associated with mitochondrial dysfunctions. However, the initiation and regulation of mitochondrial biogenesis rely heavily on approximately 1000 nuclear-encoded mitochondrial regulatory proteins. In this study, we targeted the ubiquinol-cytochrome c reductase core protein I gene, a nuclear-encoded component of mitochondrial complex III, for its association with subcutaneous fat depth (SFD) and skeletal muscle lipid accumulation (SMLA) using cattle as a model. Four promoter polymorphisms were identified and genotyped on approximately 250 Wagyu x Limousin F2 progeny. Statistical analysis revealed that two completely linked polymorphic sites, g.13487C>T and g.13709G>C (r2 = 1), were significantly associated with both SFD (p < 0.01) and SMLA (p < 0.0001). The difference between TTCC and CCGG haplotypes was 0.178 cm for SFD and 0.624 scores for SMLA. Interestingly, the former haplotype produced higher promoter activities than the latter by 43% to 49% in three cell lines (p < 0.05). In addition to Rett syndrome and breast/ovarian cancer observed in other studies, we report evidence for the first time, to our knowledge, that overexpression of ubiquinol-cytochrome c reductase core protein I might affect mitochondrial morphology and/or physiology and lead to development of obesity and related conditions.  相似文献   
163.
In 1871, the observation of yellowish nodules in the enlarged spleen of a cow was considered to be the first reported case of bovine leukemia. The etiological agent of this lymphoproliferative disease, bovine leukemia virus (BLV), belongs to the deltaretrovirus genus which also includes the related human T-lymphotropic virus type 1 (HTLV-1). This review summarizes current knowledge of this viral system, which is important as a model for leukemogenesis. Recently, the BLV model has also cast light onto novel prospects for therapies of HTLV induced diseases, for which no satisfactory treatment exists so far.  相似文献   
164.
165.
Although ample evidence point to the central involvement of protease activated receptor-1 (PAR1) in tumor progression, little is known about the fate of the tumor when hPar1 is being silenced. We observed that hPar1 antisense clones exhibit low PAR1 levels, attenuated cell proliferation and invasion in vitro, and tumor formation in vivo. These clones showed noticeably reduced paxillin phosphorylation compared with the parental A375SM cells, whereas no change in the integrin levels was noticed. Antisense clones injected into the mice resulted in very few and only occasional small tumors, whereas advanced and vascularized tumors were observed in A375SM cells. The antisense-derived tumor sections expressed active caspase-3, increased terminal deoxynucleotidyl transferase-mediated nick-end labeling staining, and a markedly reduced proliferating cell nuclear antigen level compared with A375SM cell-derived tissue sections. Likewise, ablation of the hPar1 gene in a tetracycline-inducible hPar1 system leads to apoptosis in immature blood vessels, whereas mature vessels were unaffected. The activation of PAR1-induced pAkt/protein kinase B abrogated serum-deprived Bim(EL) induction and also markedly inhibited Bax levels. On the other hand, small interfering RNA silencing of the hPar1 gene induced the expression of Bim(EL), a direct substrate of Akt/protein kinase B and also induced expression of active caspase-9 and caspase-3. These results altogether identify PAR1 as a survival factor that protects cells from undergoing apoptosis. We conclude that whereas PAR1 gene expression correlates with tumor progression, its neutralization effectively initiates an apoptotic pathway leading at least in part to significantly reduced tumor formation.  相似文献   
166.
Two members of the AAA+ superfamily, ClpB and Hsp104, collaborate with Hsp70 and Hsp40 to rescue aggregated proteins. However, the mechanisms that elicit and underlie their protein-remodeling activities remain unclear. We report that for both Hsp104 and ClpB, mixtures of ATP and ATP-gammaS unexpectedly unleash activation, disaggregation and unfolding activities independent of cochaperones. Mutations reveal how remodeling activities are elicited by impaired hydrolysis at individual nucleotide-binding domains. However, for some substrates, mixtures of ATP and ATP-gammaS abolish remodeling, whereas for others, ATP binding without hydrolysis is sufficient. Remodeling of different substrates necessitates a diverse balance of polypeptide 'holding' (which requires ATP binding but not hydrolysis) and unfolding (which requires ATP hydrolysis). We suggest that this versatility in reaction mechanism enables ClpB and Hsp104 to reactivate the entire aggregated proteome after stress and enables Hsp104 to control prion inheritance.  相似文献   
167.
We focus on finding a consensus motif of a set of homologous or functionally related RNA molecules. Recent approaches to this problem have been limited to simple motifs, require sequence alignment, and make prior assumptions concerning the data set. We use genetic programming to predict RNA consensus motifs based solely on the data set. Our system -- dubbed GeRNAMo (Genetic programming of RNA Motifs) -- predicts the most common motifs without sequence alignment and is capable of dealing with any motif size. Our program only requires the maximum number of stems in the motif, and if prior knowledge is available the user can specify other attributes of the motif (e.g., the range of the motif's minimum and maximum sizes), thereby increasing both sensitivity and speed. We describe several experiments using either ferritin iron response element (IRE); signal recognition particle (SRP); or microRNA sequences, showing that the most common motif is found repeatedly, and that our system offers substantial advantages over previous methods.  相似文献   
168.
169.
Breast cancer cells experience a range of shear stresses in the tumor microenvironment (TME). However most current in vitro three-dimensional (3D) models fail to systematically probe the effects of this biophysical stimuli on cancer cell metastasis, proliferation, and chemoresistance. To investigate the roles of shear stress within the mammary and lung pleural effusion TME, a bioreactor capable of applying shear stress to cells within a 3D extracellular matrix was designed and characterized. Breast cancer cells were encapsulated within an interpenetrating network hydrogel and subjected to shear stress of 5.4 dynes cm−2 for 72 hr. Finite element modeling assessed shear stress profiles within the bioreactor. Cells exposed to shear stress had significantly higher cellular area and significantly lower circularity, indicating a motile phenotype. Stimulated cells were more proliferative than static controls and showed higher rates of chemoresistance to the anti-neoplastic drug paclitaxel. Fluid shear stress-induced significant upregulation of the PLAU gene and elevated urokinase activity was confirmed through zymography and activity assay. Overall, these results indicate that pulsatile shear stress promotes breast cancer cell proliferation, invasive potential, chemoresistance, and PLAU signaling.  相似文献   
170.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号