首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3041篇
  免费   202篇
  国内免费   2篇
  2024年   2篇
  2023年   17篇
  2022年   35篇
  2021年   90篇
  2020年   55篇
  2019年   59篇
  2018年   95篇
  2017年   62篇
  2016年   115篇
  2015年   164篇
  2014年   160篇
  2013年   226篇
  2012年   278篇
  2011年   254篇
  2010年   169篇
  2009年   139篇
  2008年   226篇
  2007年   178篇
  2006年   191篇
  2005年   131篇
  2004年   127篇
  2003年   126篇
  2002年   116篇
  2001年   22篇
  2000年   9篇
  1999年   22篇
  1998年   14篇
  1997年   16篇
  1996年   15篇
  1995年   21篇
  1994年   16篇
  1993年   10篇
  1992年   16篇
  1991年   8篇
  1990年   4篇
  1989年   8篇
  1987年   6篇
  1986年   2篇
  1985年   3篇
  1983年   2篇
  1982年   8篇
  1981年   5篇
  1980年   4篇
  1974年   4篇
  1973年   1篇
  1972年   3篇
  1971年   1篇
  1970年   1篇
  1961年   1篇
  1954年   1篇
排序方式: 共有3245条查询结果,搜索用时 31 毫秒
41.
Molecular docking of peptides to proteins can be a useful tool in the exploration of the possible peptide binding sites and poses. CABS‐dock is a method for protein–peptide docking that features significant conformational flexibility of both the peptide and the protein molecules during the peptide search for a binding site. The CABS‐dock has been made available as a web server and a standalone package. The web server is an easy to use tool with a simple web interface. The standalone package is a command‐line program dedicated to professional users. It offers a number of advanced features, analysis tools and support for large‐sized systems. In this article, we outline the current status of the CABS‐dock method, its recent developments, applications, and challenges ahead.  相似文献   
42.
Despite widespread variability and redundancy abounding animal immunity, little is currently known about the rate of evolutionary convergence (functionally analogous traits not inherited from a common ancestor) in host molecular adaptations to parasite selective pressures. Toll‐like receptors (TLRs) provide the molecular interface allowing hosts to recognize pathogenic structures and trigger early danger signals initiating an immune response. Using a novel combination of bioinformatic approaches, here we explore genetic variation in ligand‐binding regions of bacteria‐sensing TLR4 and TLR5 in 29 species belonging to the tit family of passerine birds (Aves: Paridae). Three out of the four consensual positively selected sites in TLR4 and six out of 14 positively selected positions in TLR5 were located on the receptor surface near the functionally important sites, and based on the phylogenetic pattern evolved in a convergent (parallel) manner. This type of evolution was also seen at one N‐glycosylation site and two positively selected phosphorylation sites, providing the first evidence of convergence in post‐translational modifications in evolutionary immunology. Finally, the overall mismatch between phylogeny and the clustering of surface charge distribution demonstrates that convergence is common in overall TLR4 and TLR5 molecular phenotypes involved in ligand binding. Our analysis did not reveal any broad ecological traits explaining the convergence observed in electrostatic potentials, suggesting that information on microbial symbionts may be needed to explain TLR evolution. Adopting state‐of‐the‐art predictive structural bionformatics, we have outlined a new broadly applicable methodological approach to estimate the functional significance of positively selected variation and test for the adaptive molecular convergence in protein‐coding polymorphisms.  相似文献   
43.
44.
45.
Wetlands Ecology and Management - Plants play an important role in fishpond littorals, but little is known about factors influencing their presence and growth patterns. We surveyed vegetation of...  相似文献   
46.
Hybrid advantage, described as the superiority of hybrids in some traits over their parents and termed the “heterosis effect,” is widely documented in the case of reciprocal crosses of parental species (i.e., hybrids representing the F1 generation). In fish, high survival, fast growth and better health status have been widely documented in F1 hybrids. Nonetheless, the effects of interspecific hybridization on vigour, physiology and immunity-related traits in fish are largely unknown, especially concerning native systems of coexisting parental and hybrid genomes in the same habitat. The present study examined the potential physiological and immune aspects of hybrid heterosis by comparing condition status (measured especially by indexes), haematological profile, glucose concentration and selected parameters of non-specific and specific immunity between the evolutionarily divergent non-congeneric cyprinoid species Abramis brama and Rutilus rutilus and their hybrids representing the F1 generation, all of them caught in nature. Clear differences were documented for vigour-related, physiological and immune parameters between the two divergent species. Hybrids generally tended to express intermediate characters of the measured traits, likely generated by the evolutionary divergence of the hybridizing species; nonetheless, for some traits, hybrids exhibited a character that was more similar to one parental species than to the other. This was interpreted as the heterozygote advantage for F1 hybrids. It is suggested that a maternally inherited genetic background may potentially influence the expression of some branches of non-specific immunity or other aspects related to the fish health status.  相似文献   
47.
Biomechanics and Modeling in Mechanobiology - The human conjunctival epithelial cells (HCEC) line the inner sides of the eyelids and the anterior part of the sclera. They include goblet cells that...  相似文献   
48.
49.
Overwintering is a challenging period in the life of temperate insects. A limited energy budget characteristic of this period can result in reduced investment in immune system. Here, we investigated selected physiological and immunological parameters in laboratory‐reared and field‐collected harlequin ladybirds (Harmonia axyridis). For laboratory‐reared beetles, we focused on the effects of winter temperature regime (cold, average, or warm winter) on total haemocyte concentration aiming to investigate potential effects of ongoing climate change on immune system in overwintering insects. We recorded strong reduction in haemocyte concentration during winter; however, there were only limited effects of winter temperature regime on changes in haemocyte concentration in the course of overwintering. For field‐collected beetles, we measured additional parameters, specifically: total protein concentration, antimicrobial activity against Escherichia coli, and haemocyte concentration before and after overwintering. The field experiment did not investigate effects of winter temperature, but focused on changes in inducibility of insect immune system during overwintering, that is, measured parameters were compared between naïve beetles and those challenged by Escherichia coli. Haemocyte concentration decreased during overwintering, but only in individuals challenged by Escherichia coli. Prior to overwintering, the challenged beetles had a significantly higher haemocyte concentration compared to naïve beetles, whereas no difference was observed after overwintering. A similar pattern was observed also for antimicrobial activity against Escherichia coli as challenged beetles outperformed naïve beetles before overwintering, but not after winter. In both sexes, total protein concentration increased in the course of overwintering, but females had a significantly higher total protein concentration in their hemolymph compared to males. In general, our results revealed that insect’s ability to respond to an immune challenge is significantly reduced in the course of overwintering.  相似文献   
50.
In this study, we analyzed multibilayer lipid-protein membranes composed of the photosynthetic light-harvesting complex II (LHCII; isolated from spinach [Spinacia oleracea]) and the plant lipids monogalcatosyldiacylglycerol and digalactosyldiacylglycerol. Two types of pigment-protein complexes were analyzed: those isolated from dark-adapted leaves (LHCII) and those from leaves preilluminated with high-intensity light (LHCII-HL). The LHCII-HL complexes were found to be partially phosphorylated and contained zeaxanthin. The results of the x-ray diffraction, infrared imaging microscopy, confocal laser scanning microscopy, and transmission electron microscopy revealed that lipid-LHCII membranes assemble into planar multibilayers, in contrast with the lipid-LHCII-HL membranes, which form less ordered structures. In both systems, the protein formed supramolecular structures. In the case of LHCII-HL, these structures spanned the multibilayer membranes and were perpendicular to the membrane plane, whereas in LHCII, the structures were lamellar and within the plane of the membranes. Lamellar aggregates of LHCII-HL have been shown, by fluorescence lifetime imaging microscopy, to be particularly active in excitation energy quenching. Both types of structures were stabilized by intermolecular hydrogen bonds. We conclude that the formation of trans-layer, rivet-like structures of LHCII is an important determinant underlying the spontaneous formation and stabilization of the thylakoid grana structures, since the lamellar aggregates are well suited to dissipate excess energy upon overexcitation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号