首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   342篇
  免费   21篇
  363篇
  2023年   3篇
  2022年   3篇
  2021年   12篇
  2020年   9篇
  2019年   8篇
  2018年   13篇
  2017年   4篇
  2016年   11篇
  2015年   19篇
  2014年   17篇
  2013年   20篇
  2012年   23篇
  2011年   27篇
  2010年   22篇
  2009年   9篇
  2008年   14篇
  2007年   21篇
  2006年   16篇
  2005年   15篇
  2004年   20篇
  2003年   19篇
  2002年   10篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1997年   1篇
  1996年   4篇
  1995年   1篇
  1994年   1篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1974年   1篇
  1971年   1篇
  1969年   1篇
  1968年   1篇
  1965年   1篇
  1961年   2篇
  1949年   1篇
  1929年   1篇
  1927年   3篇
排序方式: 共有363条查询结果,搜索用时 15 毫秒
21.
The guts and casts of earthworms contain microbial assemblages that process large amounts of organic polymeric substrates from plant litter and soil; however, the enzymatic potential of these microbial communities remains largely unexplored. In the present work, we retrieved carbohydrate-modifying enzymes through the activity screening of metagenomic fosmid libraries from cellulose-depleting microbial communities established with the fresh casts of two earthworm species, Aporrectodea caliginosa and Lumbricus terrestris, as inocula. Eight glycosyl hydrolases (GHs) from the A. caliginosa-derived community were multidomain endo-β-glucanases, β-glucosidases, β-cellobiohydrolases, β-galactosidase, and β-xylosidases of known GH families. In contrast, two GHs derived from the L. terrestris microbiome had no similarity to any known GHs and represented two novel families of β-galactosidases/α-arabinopyranosidases. Members of these families were annotated in public databases as conserved hypothetical proteins, with one being structurally related to isomerases/dehydratases. This study provides insight into their biochemistry, domain structures, and active-site architecture. The two communities were similar in bacterial composition but significantly different with regard to their eukaryotic inhabitants. Further sequence analysis of fosmids and plasmids bearing the GH-encoding genes, along with oligonucleotide usage pattern analysis, suggested that those apparently originated from Gammaproteobacteria (pseudomonads and Cellvibrio-like organisms), Betaproteobacteria (Comamonadaceae), and Alphaproteobacteria (Rhizobiales).Microorganisms producing diverse glycosyl hydrolases (GHs) are widespread and typically thrive in environments where plant materials tend to accumulate and deteriorate (42, 73). The habitats of microorganisms with great GH diversity are the ruminant animal rumen, mouse bowel, and rabbit cecum (10, 24, 26, 28, 49, 74). Microorganisms associated with soil invertebrates in general and with soil earthworms in particular carry out metabolic processes that contribute to element cycling and are essential in sustaining processes which their hosts are unable to perform (20, 52, 72, 76). Although some species of earthworms produce cellulases (15, 55), they generally rely on microbes inhabiting their gastrointestinal (GI) tracts to perform cellulose utilization processes (31, 47, 77). Casts are of special interest in this respect. Considering that the overall numbers of cellulolytic microbes in earthworm casts are greater than those in soil (57), earthworm casts seem to play an important role in the decomposition of plant litter, serving as an inoculum for cellulosic substrates (9). It is important to note that microorganisms from preingested substratum (soil or plant litter) are predominant in the gut lumen (20); however, microbial populations in earthworm casts differ from those in soil in terms of diversity and the relative abundance of different taxa (29, 57, 63). It is anticipated that the enzymatic repertoire of such microbial communities must be especially broad toward diverse sugar-based polymeric, oligomeric, and monomeric substrates; however, among approximately 115 families of GHs with thousands of members known to date (12), none of the GHs have been derived from microorganisms of earthworm-associated microbial communities.The aim of the present work was therefore to examine the diversity of GHs in metagenome libraries derived from fresh casts of Aporrectodea caliginosa and Lumbricus terrestris earthworms via functional screening. Other important tasks of this work were to characterize individual enzymes and to gain insight into their structural-functional features. Finally, we performed sequence analysis of large contiguous DNA fragments of fosmids harboring the genes for GHs to associate them with the organism(s) that may produce them, which was complemented by conventional small-subunit (SSU) rRNA clone library sequencing analysis.  相似文献   
22.
Marine Crenarchaeota, ubiquitous and abundant organisms in the oceans worldwide, remain metabolically uncharacterized, largely due to their low cultivability. Identification of candidate genes for bicarbonate fixation pathway in the Cenarchaeum symbiosum A was an initial step in understanding the physiology and ecology of marine Crenarchaeota. Recent cultivation and genome sequencing of obligate chemoautotrophic Nitrosopumilus maritimus SCM1 were a major breakthrough towards understanding of their functioning and provide a valuable model for experimental validation of genomic data. Here we present the identification of multiple key components of 3-hydroxipropionate/4-hydroxybutyrate cycle, the fifth pathway in carbon fixation, found in data sets of environmental sequences representing uncultivated superficial and bathypelagic Crenarchaeota from Sargasso sea (GOS data set) and KM3 (Mediterranean Sea) and ALOHA (Atlantic ocean) stations. These organisms are likely to use acetyl-CoA/propionyl-CoA carboxylase(s) as CO2-fixing enzyme(s) to form succinyl-CoA, from which one molecule of acetyl-CoA is regenerated via 4-hydroxybutyrate cleavage and another acetyl-CoA to be the pathway product. The genetic distinctiveness and matching sympatric abundance imply that marine crenarchaeal genotypes from the three different geographic sites share similar ecophysiological properties, and therefore may represent fundamental units of marine ecosystem functioning. To couple results of sequence comparison with the dark ocean primary production, dissolved inorganic carbon fixation rates were measured at KM3 Station (3000 m depth, Eastern Mediterranean Sea), i.e. at the same site and depth used for metagenomic library construction.  相似文献   
23.
Carboxyl esterases (CE) exhibit various reaction specificities despite of their overall structural similarity. In present study we have exploited functional metagenomics, saturation mutagenesis and experimental protein evolution to explore residues that have a significant role in substrate discrimination. We used an enzyme, designated 3A6, derived from the earthworm gut metagenome that exhibits CE and feruloyl esterase (FAE) activities with p-nitrophenyl and cinnamate esters, respectively, with a [(kcat/Km)]CE/[(kcat/Km)]FAE factor of 17. Modelling-guided saturation mutagenesis at specific hotspots (Lys281, Asp282, Asn316 and Lys317) situated close to the catalytic core (Ser143/Asp273/His305) and a deletion of a 34-AA–long peptide fragment yielded mutants with the highest CE activity, while cinnamate ester bond hydrolysis was effectively abolished. Although, single to triple mutants with both improved activities (up to 180-fold in kcat/Km values) and enzymes with inverted specificity ((kcat/Km)CE/(kcat/Km)FAE ratio of ∼0.4) were identified, no CE inactive variant was found. Screening of a large error-prone PCR-generated library yielded by far less mutants for substrate discrimination. We also found that no significant changes in CE activation energy occurs after any mutation (7.3 to −5.6 J mol−1), whereas a direct correlation between loss/gain of FAE function and activation energies (from 33.05 to −13.7 J mol−1) was found. Results suggest that the FAE activity in 3A6 may have evolved via introduction of a limited number of ‘hot spot’ mutations in a common CE ancestor, which may retain the original hydrolytic activity due to lower restrictive energy barriers but conveys a dynamic energetically favourable switch of a second hydrolytic reaction.  相似文献   
24.
Any scenario of the transition from chemistry to biology should include an ??energy module?? because life can exist only when supported by energy flow(s). We addressed the problem of primordial energetics by combining physico-chemical considerations with phylogenomic analysis. We propose that the first replicators could use abiotically formed, exceptionally photostable activated cyclic nucleotides both as building blocks and as the main energy source. Nucleoside triphosphates could replace cyclic nucleotides as the principal energy-rich compounds at the stage of the first cells, presumably because the metal chelates of nucleoside triphosphates penetrated membranes much better than the respective metal complexes of nucleoside monophosphates. The ability to exploit natural energy flows for biogenic production of energy-rich molecules could evolve only gradually, after the emergence of sophisticated enzymes and ion-tight membranes. We argue that, in the course of evolution, sodium-dependent membrane energetics preceded the proton-based energetics which evolved independently in bacteria and archaea.  相似文献   
25.
Billions of inflammatory leukocytes die and are phagocytically cleared each day. This regular renewal facilitates the normal termination of inflammatory responses, suppressing pro-inflammatory mediators and inducing their anti-inflammatory counterparts. Here we investigate the role of the receptor tyrosine kinase (RTK) Mer and its ligands Protein S and Gas6 in the initial recognition and capture of apoptotic cells (ACs) by macrophages. We demonstrate extremely rapid binding kinetics of both ligands to phosphatidylserine (PtdSer)-displaying ACs, and show that ACs can be co-opsonized with multiple PtdSer opsonins. We further show that macrophage phagocytosis of ACs opsonized with Mer ligands can occur independently of a requirement for αV integrins. Finally, we demonstrate a novel role for Mer in the tethering of ACs to the macrophage surface, and show that Mer-mediated tethering and subsequent AC engulfment can be distinguished by their requirement for Mer kinase activity. Our results identify Mer as a receptor uniquely capable of both tethering ACs to the macrophage surface and driving their subsequent internalization.Many diseases, including rheumatoid arthritis, pulmonary fibrosis, adult respiratory distress syndrome, and inflammatory bowel disease,1, 2, 3, 4 are commonly marked by impaired resolution of inflammation that is linked to defects in the phagocytic clearance of apoptotic cells.5, 6, 7 Apoptotic cell (AC) clearance normally eliminates a plethora of pro-inflammatory stimuli,8, 9 and the recognition of ACs by phagocytes10 limits progression to necrosis,11 suppresses pro-inflammatory mediator production, and induces IL-10 and TGF-β release.12, 13 As defective clearance of ACs is associated with the development of inflammatory disease and autoimmunity,14, 15 new therapeutic approaches designed to increase the capacity of phagocytes to remove ACs could effectively promote the resolution of inflammation.Phagocytosis of ACs can be regulated by soluble mediators, including cytokines,16, 17 prostaglandins and lipoxins,17, 18, 19 serum proteins,20 agonists of Liver X receptors (LXRs),17, 21 and glucocorticoids (GC).17, 22 In particular, LXR agonists and GCs promote phagocytosis of ACs predominantly via a Tyro3/Axl/Mer (TAM) receptor tyrosine kinase (RTK)-dependent pathway.17, 21, 23 There are two established ligands for the TAM RTKs, Protein S (gene name Pros1), which activates Tyro3 and Mer, and Gas6, which activates all three TAMs,24, 25 although other ligands have been suggested.26, 27 The amino terminal Gla domains of Protein S and Gas6 bind to phosphatidylserine (PtdSer) on the plasma membrane of ACs,28 a potent ‘eat-me'' signal by which ACs are recognized by phagocytes.29 TAM receptors bind to the carboxy terminal domains of Protein S and Gas6, which effectively act as molecular ‘bridges'' between PtdSer on the AC and TAM receptors on the phagocyte.17, 30, 31 TAM receptor- and ligand-deficient mice exhibit defective phagocytic pruning of photoreceptor outer segments by retinal pigment epithelial (RPE) cells of the eye,32, 33, 34 defective clearance of apoptotic germ cells by Sertoli cells of the testis,35 and defective clearance of ACs by macrophages/dendritic cells in lymphoid organs.36 These phenotypes are also detectable in Mer (gene name Mertk) single knockouts.37 In addition to phagocytic clearance, TAM signaling also has a pivotal role in controlling the innate immune response to pathogenic stimuli.13, 17, 38Although the importance of Mer in the internalization of ACs by macrophages is now well-established, this receptor has been thought not to have a significant role in the initial ‘tethering'' of ACs to the macrophage surface.36, 39 In their studies, Scott et al.36 used peritoneal macrophages for which tethering of ACs has now been shown to be mediated by T-cell immunoglobulin and mucin domain-containing molecule 4 (TIM4).39 Subsequent internalization of tethered ACs is then mediated by either integrin αvβ3- or Mer-mediated signaling.39, 40 Similarly, for RPE cells, the initial capture of photoreceptor outer segments by RPE cells required the integrin αvβ5,41 with Mer-dependent signaling necessary for subsequent internalization. To further probe the mechanistic role of Mer in AC recognition and engulfment, we have now examined macrophages that predominantly use a Mer-dependent AC phagocytosis mechanism.17, 23 We show that in these cells, which do not express TIM4, Mer has the capacity to serve a unique dual role in mediating both tethering of ACs to the macrophage surface as well as subsequent AC engulfment.  相似文献   
26.
Archaea contain one or more proteins with homology to eukaryotic ORC/Cdc6 proteins. Sequence analysis suggests the existence of at least two subfamilies of these proteins, for which we propose the nomenclature ORC1 and ORC2. We have determined crystal structures of the ORC2 protein from the archaeon Aeropyrum pernix in complexes with ADP or a non-hydrolysable ATP analogue, ADPNP. Between two crystal forms, there are three crystallographically independent views of the ADP complex and two of the ADPNP complex. The protein molecules in the three complexes with ADP adopt very different conformations, while the two complexes with ADPNP are the same. These structures indicate that there is considerable conformational flexibility in ORC2 but that ATP binding stabilises a single conformation. We show that the ORC2 protein can bind DNA, and that this activity is associated with the C-terminal domain of the protein. We present a model for the interaction of the winged helix (WH) domain of ORC2 with DNA that differs from that proposed previously for Pyrobaculum aerophilum ORC/Cdc6.  相似文献   
27.
Total lipid, fatty acid and sterol composition of larvae and adults of Musca domestica was investigated before and after feeding on sucrose syrup or on the same syrup containing 1% lead nitrate. The effects of sucrose and of lead ions were found to be different. In larvae sucrose diet inhibited the fatty acid elongation and stimulated the first stages of their unsaturation. A significant increase of phytosterol concentrations was obtained. These changes increased the cell membrane permeability. The addition of lead caused a decrease of the fatty acid unsaturation, which decreased the cell membrane permeability. In adults the sucrose diet had no effect on the lipid and sterol composition, while the addition of lead decreased the cholesterol concentration. The composition of lipids and sterols also depends on the diet of larvae before pupation. The data obtained suggested that changes in lipid and sterol composition, which control the permeability of the cell membrane, might be an adaptive response of the organism to the changes of the environment.  相似文献   
28.
Tat-encoding human immunodeficiency virus type 1 (HIV-1) gene transfer vectors were evaluated in primary canine bone marrow mononuclear cells. Tat vectors provided higher levels of gene expression than vectors with internal promoters. The HIV-1 vector was also more efficient than Moloney murine leukemia virus (MoMLV) vectors for transduction of canine bone marrow mononuclear cells in vitro. Transplantation experiments in dogs with transduced autologous marrow cells confirmed the superiority of HIV-1 vectors over MoMLV vectors for gene transfer into canine bone marrow cells. Tat vectors may be useful not only for providing high levels of therapeutic gene expression in hematopoietic cells but also for study of the biological effects of Tat in those tissues in the canine model.  相似文献   
29.
The biosphere of planet Earth is delineated by physico-chemical conditions that are too harsh for, or inconsistent with, life processes and maintenance of the structure and function of biomolecules. To define the window of life on Earth (and perhaps gain insights into the limits that life could tolerate elsewhere), and hence understand some of the most unusual biological activities that operate at such extremes, it is necessary to understand the causes and cellular basis of systems failure beyond these windows. Because water plays such a central role in biomolecules and bioprocesses, its availability, properties and behaviour are among the key life-limiting parameters. Saline waters dominate the Earth, with the oceans holding 96.5% of the planet's water. Saline groundwater, inland seas or saltwater lakes hold another 1%, a quantity that exceeds the world's available freshwater. About one quarter of Earth's land mass is underlain by salt, often more than 100 m thick. Evaporite deposits contain hypersaline waters within and between their salt crystals, and even contain large subterranean salt lakes, and therefore represent significant microbial habitats. Salts have a major impact on the nature and extent of the biosphere, because solutes radically influence water's availability (water activity) and exert other activities that also affect biological systems (e.g. ionic, kosmotropic, chaotropic and those that affect cell turgor), and as a consequence can be major stressors of cellular systems. Despite the stressor effects of salts, hypersaline environments can be heavily populated with salt-tolerant or -dependent microbes, the halophiles. The most common salt in hypersaline environments is NaCl, but many evaporite deposits and brines are also rich in other salts, including MgCl(2) (several hundred million tonnes of bischofite, MgCl(2).6H(2)O, occur in one formation alone). Magnesium (Mg) is the third most abundant element dissolved in seawater and is ubiquitous in the Earth's crust, and throughout the Solar System, where it exists in association with a variety of anions. Magnesium chloride is exceptionally soluble in water, so can achieve high concentrations (> 5 M) in brines. However, while NaCl-dominated hypersaline environments are habitats for a rich variety of salt-adapted microbes, there are contradictory indications of life in MgCl(2)-rich environments. In this work, we have sought to obtain new insights into how MgCl(2) affects cellular systems, to assess whether MgCl(2) can determine the window of life, and, if so, to derive a value for this window. We have dissected two relevant cellular stress-related activities of MgCl(2) solutions, namely water activity reduction and chaotropicity, and analysed signatures of life at different concentrations of MgCl(2) in a natural environment, namely the 0.05-5.05 M MgCl(2) gradient of the seawater : hypersaline brine interface of Discovery Basin - a large, stable brine lake almost saturated with MgCl(2), located on the Mediterranean Sea floor. We document here the exceptional chaotropicity of MgCl(2), and show that this property, rather than water activity reduction, inhibits life by denaturing biological macromolecules. In vitro, a test enzyme was totally inhibited by MgCl(2) at concentrations below 1 M; and culture medium with MgCl(2) concentrations above 1.26 M inhibited the growth of microbes in samples taken from all parts of the Discovery interface. Although DNA and rRNA from key microbial groups (sulfate reducers and methanogens) were detected along the entire MgCl(2) gradient of the seawater : Discovery brine interface, mRNA, a highly labile indicator of active microbes, was recovered only from the upper part of the chemocline at MgCl(2) concentrations of less than 2.3 M. We also show that the extreme chaotropicity of MgCl(2) at high concentrations not only denatures macromolecules, but also preserves the more stable ones: such indicator molecules, hitherto regarded as evidence of life, may thus be misleading signatures in chaotropic environments. Thus, the chaotropicity of MgCl(2) would appear to be a window-of-life-determining parameter, and the results obtained here suggest that the upper MgCl(2) concentration for life, in the absence of compensating (e.g. kosmotropic) solutes, is about 2.3 M.  相似文献   
30.
We studied composition and concentrations of fatty acids (FAs) in benthos from pebbly littoral region of the Yenisei River in a sampling site near Krasnoyarsk city (Siberia, Russia) for 1 year from March 2003 to February 2004. Special attention was paid to major long-chain polyunsaturated fatty acids (PUFAs) of the ω3 family: eicosapentaenoic acid (EPA, 20:5ω3) and docosahexaenoic acids (DHA, 22:6ω3). In phytobenthos, which was dominated by diatoms, the annual maxima of EPA and DHA pool occurred in spring and early summer. In zoobenthos, EPA and DHA pool peaked in autumn, due mainly to an increase of the biomass of dominant taxa (gammarids) and to a moderate increase of the PUFA content per body weight. Seasonal peaks of EPA in overwintering insect larvae (chironomids and caddisflies) generally coincided with those of biomass of these larvae, while there was no such trend for amphipods and oligochaetes. In spring and early summer, the main part of ω3 PUFA, 40–97% of total amount, in the littoral region was contained in biomass of producers, i.e., benthic microalgae, and in autumn it was transferred to primary consumers—benthic invertebrates, which contained ∼76–93% of total ω3 PUFAs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号