首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   449篇
  免费   47篇
  2015年   6篇
  2014年   8篇
  2013年   5篇
  2012年   13篇
  2011年   16篇
  2010年   5篇
  2009年   7篇
  2008年   14篇
  2007年   15篇
  2006年   9篇
  2005年   14篇
  2004年   9篇
  2003年   7篇
  2002年   10篇
  2001年   11篇
  2000年   14篇
  1999年   12篇
  1998年   9篇
  1997年   11篇
  1996年   9篇
  1995年   5篇
  1993年   5篇
  1992年   9篇
  1991年   13篇
  1990年   13篇
  1989年   7篇
  1988年   15篇
  1987年   5篇
  1986年   9篇
  1985年   10篇
  1984年   5篇
  1983年   7篇
  1982年   7篇
  1981年   8篇
  1979年   7篇
  1977年   5篇
  1976年   8篇
  1975年   10篇
  1974年   8篇
  1973年   10篇
  1971年   5篇
  1968年   5篇
  1965年   4篇
  1962年   4篇
  1959年   4篇
  1957年   4篇
  1948年   6篇
  1942年   4篇
  1935年   6篇
  1927年   4篇
排序方式: 共有496条查询结果,搜索用时 15 毫秒
11.
The nuclear mutation pet ts1402 prevents proteolytic processing of the precursor of cytochrome oxidase subunit 2 (cox2) in Saccharomyces cerevisiae. The structural gene PET1402 was isolated by genetic complementation of the temperature-sensitive mutation. DNA sequence analysis identified a 1206-bp open reading frame, which is located 215 by upstream of the PET122 gene. The DNA sequence of PET1402 predicts a hydrophobic, integral membrane protein with four transmembrane segments and a typical mitochondrial targeting sequence. Weak sequence similarity was found to two bacterial proteins of unknown function. Haploid cells containing a null allelle of PET1402 are respiratory deficient.  相似文献   
12.
Summary Biomarker investigations were applied to the hydrocarbon fractions of three Recent (cyanobacterial mat, Lake Van microbialite and Lake Satonda microbialite) and two Late Jurassic carbonate samples obtained from sponge bioherms. The relative concentrations ofn-alkanes, monomethyl alkanes, acyclic isoprenoids, steroids and hopanoids in these samples are studied and their probable biological precursors are discussed. Normal alkanes with carbon chain lengths ranging from C15 to C34 and monomethyl alkanes ranging from C17 to C21 with a varying methyl branching pattern are found. The major hydrocarbons are low molecular weight (LMW)n-alkanes (C15–C21) with a slight to strong predominance ofn-heptadecane (C17). High molecular weight (HMW)n-alkanes occur in low to moderate relative concentrations showing a preference of odd-carbon numbered compounds with a maximum at C29. Within the acyclic isoprenoids, pristane, phytane/phytene, pentamethyl-eicosane, squalane and lycopane could be identified. Polycyclic terpenoids of the sterane and/or hopane type are present in all carbonate samples. The carbon numbers of these components range from 27 to 29 and 27 to 32, respectively. These organic compounds identified can be attributed to various source organisms such as cyanobacteria, archaebacteria, algae and vascular plants. All hydrocarbon fractions of the samples are characterized by moderate to high relative concentrations of compounds derived from cyanobacteria, signifying the role of these organisms as contributors to the Recent as well as to the Late Jurassic carbonate deposits.  相似文献   
13.
Summary Mitochondrial DNA (mtDNA) variation in natural Beta maritima populations has been characterized by way of Southern blot hybridizations of total DNA using non-radioactive probes and chemiluminescent detection. It was found that the previously described N (normal) mitochondrial type could be subdivided into three subtypes. A new mitochondrial genotype (type R) was distinguished in addition to the previously described type S. Both are male-sterile cytoplasms and can produce a. segregation of sexual phenotypes in their progenies depending on the nuclear background. The populations contained at least two to four different mitochondrial genotypes.  相似文献   
14.
Summary The strong excitatory activity of L-glutamic acid on central nervous system neurons is thought to be produced by interaction of this amino acid with specific neuronal plasma membrane receptors. The binding of L-glutamate to these surface receptors brings about an increase in membrane permeability to Na+ and Ca2+ ions presumably through direct activation of ion channels linked to the membrane receptors. The studies described in this paper represent attempts to define the subcellular distribution and pharmacological properties of the recognition site for L-glutamic acid in brain neuronal preparations, to isolate and explore the molecular characteristics of the receptor recognition site, and, finally, to demonstrate the activation of Na+ channels in synaptic membranes following the interaction of glutamate with its receptors.Radioligand binding assays with L-[3H] glutamic acid have been used to demonstrate a relative enrichment of these glutamate recognition sites in isolated synaptic plasma membranes. The specific binding of L-[3H] glutamate to these membrane sites exhibits rapid association and dissociation kinetics and rather complex equilibrium binding kinetics. The glutamate binding macromolecule from synaptic membranes has been solubilized and purified and was shown to be a small molecular weight glycoprotein (MT 13 000). This protein tends to form aggregates which have higher specific activity at low concentrations of glutamate than the MT 13 000 protein has. The overall affinity of the purified protein is lower than that of the high affinity sites in the membrane. Nevertheless, the purified protein exhibits pharmacological characteristics very similar to those of the membrane binding sites. On the basis of its pharmacological properties this protein belongs in the category of the physiologic glutamate preferring receptors.By means of differential solubilization of membrane proteins with Na-cholate, it was shown that this recognition site is an intrinsic synaptic membrane protein whose binding activity is enhanced rather than diminished by cholate extraction of the synaptic membranes. The role of membrane constituents in regulating the binding activity of this protein has been explored and a possible modulation of glutamate binding by membrane gangliosides has been demonstrated. Finally, this glutamate binding glycoprotein is a metalloprotein whose activity is dependent on the integrity of its metallic (Fe) center. This is a clear distinguishing characteristic of this protein vis-à-vis the glutamate transport carriers.The presence of functional glutamate receptors in synaptosomes and resealed synaptic plasma membranes has also been documented by the demonstration of glutamate-activated Na+ flux across the membrane of these preparations. The bidirectionality, temperature independence, and apparent desensitization of this stimulated flux following exposure to high concentrations of glutamate are properties indicative of a receptor-initiated ion channel activation. It would appear, then, that the synaptic membrane preparations provide a very useful system for the study of both recognition and effector function of the glutamate receptor complex.  相似文献   
15.
The hydrodynamic properties of the previously purified glutamate-binding protein from rat synaptic membranes were determined in order to estimate the molecular size of the protein in its native state. This protein is apparently a subunit of a multisubunit complex that forms the N-methyl-D-aspartate subtype of glutamate receptor and has a molecular size of approximately 70 kDa based on electrophoretic migration under denaturing conditions. On the basis of results obtained from H2O/D2O sucrose density gradient sedimentation and gel filtration chromatography of the purified glutamate-binding protein we calculated the partial specific volume of the protein-detergent complex to be 0.766 cc3/g, the Stokes radius of the complex as 4.9 nm, the Mc of the complex as 203,000 +/- 22,000 and the Mr of the protein as 182,000 +/- 19,000. These results are indicative of stable self-association of the glutamate-binding protein and are in agreement with recent studies indicating that more than one molecule of glutamate may be required to activate the N-methyl-D-aspartate receptor-associated ion channel.  相似文献   
16.
The receptors on neuronal membranes for N-methyl-D-aspartate (NMDA), an analog of L-glutamic acid, are the focus of intensive study because of their importance in many neurophysiological and neuropathological states. Since there is very little knowledge of the molecular characteristics of the NMDA receptors, we undertook the development of methods for the solubilization and purification of proteins that form the receptor complex. Optimal conditions for solubilization of NMDA receptors from isolated synaptic plasma membranes involved the use of the zwitterionic detergent 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS) together with NH4SCN, 10% glycerol, and the nonionic detergent polyoxyethylene 10 tridecyl ether. The presence of NMDA receptors was monitored as the binding activity for the specific NMDA receptor ligand 3-((+-)-2-carboxypiperazine-4-yl)-[1,2-3H]propyl-1-phosphonic acid ([3H]CPP). Approximately 50% of membrane proteins were solubilized, and an equal quantitative recovery of [3H]CPP-binding proteins was achieved. The selectivity of [3H] CPP-binding proteins for excitatory amino acid agonists and aminophosphonocarboxylic acid antagonists remained essentially unchanged following solubilization. The effect of the NMDA receptor modulator, glycine, and of the ion channel-blocking cation Mg2+ on [3H]CPP-binding proteins was drastically altered by solubilization. Both became activators of [3H]CPP-binding sites. The NMDA receptor agonist ibotenic acid was used to develop an affinity matrix for the isolation of the NMDA receptor complex. The [3H]CPP-binding proteins were selectively eluted by the introduction of 2 mM Mg2+ in the elution buffers. This fraction was highly enriched in CPP-binding entities and in a protein of 58-60-kDa molecular size. The CPP binding activity of the proteins in this fraction was enriched by a factor of approximately 20,000 over that of brain homogenate. There was no L-[3H]glutamate binding activity associated with this fraction. Proteins interacting with glutamate, NMDA, and ibotenate were recovered in the 1 M KCl-eluted fraction. We propose that the 58-60-kDa protein is the aminophosphonocarboxylic acid antagonist-binding subunit of the NMDA receptor complex.  相似文献   
17.
The feasibility of using saponin as a permeabilization agent to study the effect of free Ca2+ concentration ([Ca2+]f) on prostaglandin I2 (PGI2) synthesis and mobilization of arachidonic acid from membrane phospholipids was investigated in cultured bovine pulmonary artery endothelial cells (BPAEC). Treatment of BPAEC with 20 micrograms/ml saponin caused selective permeabilization of the plasma membrane as determined by measurements of the release of lactate dehydrogenase and beta-hexosaminidase. In cells prelabeled with [3H]arachidonic acid for 22 h, permeabilization with 20 micrograms/ml saponin induced PGI2 synthesis and release of [3H]arachidonic acid from membrane phospholipids. These effects were dependent upon [Ca2+]f in the range 72 nM to 5 microM. Release of [3H]arachidonic acid from phospholipid classes was determined in suspensions of BPAEC prelabeled with [3H]arachidonic acid and permeabilized with 20 micrograms/ml saponin. At [Ca2+]f optimal for PGI2 synthesis, 16.2% of the total incorporated [3H]arachidonic acid was released from phosphatidylinositol (3.4%), phosphatidylethanolamine (3.5%) and phosphatidylcholine (9.3%). The time course and dependence upon [Ca2+]f of [3H]arachidonic acid release from phospholipids correlated with PGI2 synthesis. The amount of PGI2 synthesized in permeabilized BPAEC was similar to that in cell cultures treated with the calcium ionophore A23187. In comparison, however, PGI2 synthesis induced by A23187 was associated with less release of [3H]arachidonic acid from membrane phospholipids, e.g., 2.3% versus 16.2%. The greater loss of [3H]arachidonic acid from phospholipids in saponin-permeabilized BPAEC was most likely due to the loss of cell integrity and/or nonspecific effects of the detergent on phospholipases. Despite these limitations, the Ca2+ dependence observed for PGI2 synthesis and [3H]arachidonic acid mobilization suggest that saponin-permeabilization may provide a useful system for studies of the intracellular events triggered by the rise in intracellular Ca2+ which culminate in PGI2 synthesis.  相似文献   
18.
Ca++ fluxes in resealed synaptic plasma membrane vesicles   总被引:5,自引:0,他引:5  
The effect of the monovalent cations Na+, Li+, and K+ on Ca++ fluxes has been determined in resealed synaptic plasma membrane vesicle preparations from rat brain. Freshly isolated synaptic membranes, as well as synaptic membranes which were frozen (?80°C), rapidly thawed, and passively loaded with K2/succinate and 45CaCl2, rapidly released approximately 60% of the intravesicular Ca++ when exposed to NaCl or to the Ca++ ionophore A 23187. Incubation of these vesicles with LiCl caused a lesser release of Ca++. The EC50 for Na+ activation of Ca++ efflux from the vesicles was approximately 6.6mM. exposure of the Ca++-loaded vesicles to 150 mM KCl produced a very rapid (?1 sec) loss of Ca++ from the vesicles, but the Na+-induced efflux could still be detected above this K+ - sensitive effect. Vesicles pre-loaded with NaCl (150 mM) exhibited rapid 45Ca uptake with an estimated EC50 for Ca++ of 7–10 μM. This Ca++ uptake was blocked by dissipation of the Na+ gradient. These observations are suggestive of the preservation in these purified frozen synaptic membrane preparations of the basic properties of the Na+Ca++ exchange process and of a K+ - sensitive Ca++ flux across the membranes.  相似文献   
19.
The structural gene for alkaline phosphatase (phoA) of Escherichia coli was cloned into the PstI site of pBR322, from a transducing bacteriophage, lambda p(phoA-proC). The restriction map of the plasmid was established. Based upon this information, several phoA deletion plasmids as well as a smaller phoA+ plasmid were constructed. The genetic map and restriction map were correlated by recombination analysis. Cells carrying one of the phoA+ plasmids overproduce alkaline phosphatase 10-fold upon phosphate limitation. However, both regulation and processing of the enzyme were found to be normal.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号