全文获取类型
收费全文 | 4224篇 |
免费 | 353篇 |
专业分类
4577篇 |
出版年
2024年 | 6篇 |
2023年 | 20篇 |
2022年 | 58篇 |
2021年 | 98篇 |
2020年 | 51篇 |
2019年 | 62篇 |
2018年 | 76篇 |
2017年 | 70篇 |
2016年 | 146篇 |
2015年 | 229篇 |
2014年 | 254篇 |
2013年 | 262篇 |
2012年 | 388篇 |
2011年 | 361篇 |
2010年 | 251篇 |
2009年 | 199篇 |
2008年 | 251篇 |
2007年 | 260篇 |
2006年 | 226篇 |
2005年 | 211篇 |
2004年 | 236篇 |
2003年 | 188篇 |
2002年 | 192篇 |
2001年 | 50篇 |
2000年 | 26篇 |
1999年 | 44篇 |
1998年 | 51篇 |
1997年 | 34篇 |
1996年 | 28篇 |
1995年 | 28篇 |
1994年 | 29篇 |
1993年 | 27篇 |
1992年 | 22篇 |
1991年 | 15篇 |
1990年 | 14篇 |
1989年 | 20篇 |
1988年 | 7篇 |
1987年 | 7篇 |
1986年 | 9篇 |
1985年 | 6篇 |
1984年 | 5篇 |
1983年 | 7篇 |
1982年 | 8篇 |
1981年 | 7篇 |
1979年 | 5篇 |
1978年 | 5篇 |
1977年 | 4篇 |
1975年 | 4篇 |
1974年 | 4篇 |
1973年 | 5篇 |
排序方式: 共有4577条查询结果,搜索用时 15 毫秒
91.
Chromatin, epigenetics and stem cells 总被引:4,自引:0,他引:4
Epigenetics is a term that has changed its meaning with the increasing biological knowledge on developmental processes. However, its current application to stem cell biology is often imprecise and is conceptually problematic. This article addresses two different subjects, the definition of epigenetics and chromatin states of stem and differentiated cells. We describe mechanisms that regulate chromatin changes and provide an overview of chromatin states of stem and differentiated cells. Moreover, a modification of the current epigenetics definition is proposed that is not restricted by the heritability of gene expression throughout cell divisions and excludes translational gene expression control. 相似文献
92.
Some Drosophila Hox-complex members, including the segmentation gene fushi tarazu (Dm-ftz), have nonhomeotic functions. Characteristic expression in other arthropods supports an ancestral homeotic role for ftz, indicating that ftz function changed during arthropod evolution. Dm-Ftz segmentation function depends on interaction with ftz-F1 via an LXXLL motif and homeodomain N-terminal arm. Hox proteins interact with the cofactor Extradenticle (Exd) via their YPWM motif. Previously, we found that Dm-ftz mediates segmentation but not homeosis, whereas orthologs from grasshopper (Sg-ftz) and beetle (Tc-Ftz), both containing a YPWM motif, have homeotic function. Tc-Ftz, which unlike Sg-Ftz contains an LXXLL motif, displays stronger segmentation function than Sg-Ftz. Cofactor-interaction motifs were mutated in Dm-Ftz and Tc-Ftz and effects were evaluated in Drosophila to assess how these motifs contributed to Ftz evolution. Addition of YPWM to Dm-Ftz confers weak homeotic function, which is increased by simultaneous LXXLL mutation. LXXLL is required for strong segmentation function, which is unimpeded by the YPWM, suggesting that acquisition of LXXLL specialized Ftz for segmentation. Strengthening the Ftz/Ftz-F1 interaction led to degeneration of the YPWM and loss of homeotic activity. Thus, small changes in protein sequence can result in a qualitative switch in function during evolution. 相似文献
93.
Russo TA Davidson BA Genagon SA Warholic NM Macdonald U Pawlicki PD Beanan JM Olson R Holm BA Knight PR 《American journal of physiology. Lung cellular and molecular physiology》2005,289(2):L207-L216
Enteric gram-negative bacilli, such as Escherichia coli are the most common cause of nosocomial pneumonia. In this study a wild-type extraintestinal pathogenic strain of E. coli (ExPEC)(CP9) and isogenic derivatives deficient in hemolysin (Hly) and cytotoxic necrotizing factor (CNF) were assessed in vitro and in a rat model of gram-negative pneumonia to test the hypothesis that these virulence factors induce neutrophil apoptosis and/or necrosis/lysis. As ascertained by in vitro caspase-3/7 and LDH activities and neutrophil morphology, Hly mediated neutrophil apoptosis at lower E. coli titers (1 x 10(5-6) cfu) and necrosis/lysis at higher titers (> or =1 x 10(7) cfu). Data suggest that CNF promotes apoptosis but not necrosis or lysis. We also demonstrate that annexin V/7-amino-actinomycin D staining was an unreliable assessment of apoptosis using live E. coli. The use of caspase-3/7 and LDH activities and neutrophil morphology supported the notion that necrosis, not apoptosis, was the primary mechanism by which neutrophils were affected in our in vivo gram-negative pneumonia model using live E. coli. In addition, in vivo studies demonstrated that Hly mediates lung injury. Neutrophil necrosis was not observed when animals were challenged with purified lipopolysaccharide, demonstrating the importance of using live bacteria. These findings establish that Hly contributes to ExPEC virulence by mediating neutrophil toxicity, with necrosis/lysis being the dominant effect of Hly on neutrophils in vivo and by lung injury. Whether Hly-mediated lung injury is due to neutrophil necrosis, a direct effect of Hly, or both is unclear. 相似文献
94.
95.
96.
Cyprinodon suavium is a new species that belongs to the endemic species flock from Laguna Chichancanab, Yucatan, Mexico, which is proposed to have evolved by sympatric speciation in the lake during the last 8000years. C. suaviumis distinguished from all other known Cyprinodon species by a flattened and concave inter- and postorbital skull roof and a terminal mouth with distinctive thickened lips. The short gut length and dietary items found in the gut indicate that C. suavium is one of the carnivorous members of the flock. 相似文献
97.
98.
Isla Humphreys Vicki Fleming Paolo Fabris Joe Parker Bodo Schulenberg Anthony Brown Charis Demetriou Silvana Gaudieri Katja Pfafferott Michaela Lucas Jane Collier Kuan-Hsiang Gary Huang Oliver G. Pybus Paul Klenerman Eleanor Barnes 《Journal of virology》2009,83(22):11456-11466
Hepatitis C virus subtype 3a is a highly prevalent and globally distributed strain that is often associated with infection via injection drug use. This subtype exhibits particular phenotypic characteristics. In spite of this, detailed genetic analysis of this subtype has rarely been performed. We performed full-length viral sequence analysis in 18 patients with chronic HCV subtype 3a infection and assessed genomic viral variability in comparison to other HCV subtypes. Two novel regions of intragenotypic hypervariability within the envelope protein E2, of HCV genotype 3a, were identified. We named these regions HVR495 and HVR575. They consisted of flanking conserved hydrophobic amino acids and central variable residues. A 5-amino-acid insertion found only in genotype 3a and a putative glycosylation site is contained within HVR575. Evolutionary analysis of E2 showed that positively selected sites within genotype 3a infection were largely restricted to HVR1, HVR495, and HVR575. Further analysis of clonal viral populations within single hosts showed that viral variation within HVR495 and HVR575 were subject to intrahost positive selecting forces. Longitudinal analysis of four patients with acute HCV subtype 3a infection sampled at multiple time points showed that positively selected mutations within HVR495 and HVR575 arose early during primary infection. HVR495 and HVR575 were not present in HCV subtypes 1a, 1b, 2a, or 6a. Some variability that was not subject to positive selection was present in subtype 4a HVR575. Further defining the functional significance of these regions may have important implications for genotype 3a E2 virus-receptor interactions and for vaccine studies that aim to induce cross-reactive anti-E2 antibodies.Hepatitis C virus (HCV) infection is a major global health issue leading to persistent viral infection in the majority of those infected and is associated with progressive liver disease, cirrhosis, and hepatocellular carcinoma. Six major genotypes of HCV have been described that have evolved in geographically distinct regions and that share approximately. 80% nucleotide homology with one another. HCV viral genotypes have been further classified into subtypes (25). HCV subtype 3a infection is now the most common subtype in the United Kingdom (11), although it is globally distributed and frequently associated with intravenous drug use.The classification of HCV viral strains by genotype and subtype has proven informative not only in terms of the epidemic and evolutionary history of the virus but also in terms of clinical outcomes. In particular, the response rates to current gold standard therapy (9) and the prevalence of hepatic steatosis (20) are significantly higher for subtype 3a than for genotype 1 infections. The reasons for this are not understood but must relate to viral genetic and phenotypic differences between strains, or to differences in the ability of hosts to exert an effective immune response against particular viral sequences, or to a combination of both factors.To date, detailed assessment of the HCV genome has largely focused on HCV genotype 1. Indeed, only a few full-length HCV subtype 3a viral sequences are currently published and available within the major HCV databases (Los Alamos; http://hcv.lanl.gov/components/hcv-db/combined_search/searchi.html and euHCVdb; http://euhcvdb.ibcp.fr/euHCVdb/) (16).To characterize HCV subtype 3a in detail, we performed whole-genome analysis of a cohort of patients with persistent HCV subtype 3a infection. We subsequently focus on the highly variable regions observed in the envelope protein E2 in both acute and chronic infection, since it was apparent that these regions were not restricted to the well-documented hypervariable region 1 (HVR1) that is found at the 5′ end of E2 in all HCV genotypes.Viral genomic variability can be assessed at a number of different levels; first, intergenotypic variability may arise in genomic regions that are conserved within the same subtype but are distinct between subtypes. Second, there is intragenotypic variability, which may be defined as regions of viral variability within the same genotype or subtype. Finally, intrahost variability is where viral genomic variability occurs within the same viral subtype and also the same host when individual clonal sequences are assessed. Although intergenotypic variability may simply be a feature of the existence of geographically distinct HCV subtypes, intragenotypic and intrahost variability may reflect viral regions subject to specific selection pressures, with important functional implications.We observed two distinct regions of intrahost and intragenotypic hypervariability within genotype 3a envelope 2 (E2)—in addition to the previously described HVR1—that we have named HVR495 and HVR575. We show that these regions are subject to positive selection pressure, sometimes very early in acute infection. Although HVR575 has been previously recognized as a site of intergenotypic variation (18), the identification of this region as a hypervariable site within genotype 3a and as a site under early selection pressure leading to variability within the same host has not been previously described. 相似文献
99.
An arginine switch in the species B adenovirus knob determines high-affinity engagement of cellular receptor CD46 下载免费PDF全文
Persson BD Müller S Reiter DM Schmitt BB Marttila M Sumowski CV Schweizer S Scheu U Ochsenfeld C Arnberg N Stehle T 《Journal of virology》2009,83(2):673-686
Adenoviruses (Ads) are icosahedral, nonenveloped viruses with a double-stranded DNA genome. The 51 known Ad serotypes exhibit profound variations in cell tropism and disease types. The number of observed Ad infections is steadily increasing, sometimes leading to fatal outcomes even in healthy individuals. Species B Ads can cause kidney infections, hemorrhagic cystitis, and severe respiratory infections, and most of them use the membrane cofactor protein CD46 as a cellular receptor. The crystal structure of the human Ad type 11 (Ad11) knob complexed with CD46 is known; however, the determinants of CD46 binding in related species B Ads remain unclear. We report here a structural and functional analysis of the Ad11 knob, as well as the Ad7 and Ad14 knobs, which are closely related in sequence to the Ad11 knob but have altered CD46-binding properties. The comparison of the structures of the three knobs, which we determined at very high resolution, provides a platform for understanding these differences and allows us to propose a mechanism for productive high-affinity engagement of CD46. At the center of this mechanism is an Ad knob arginine that needs to switch its orientation in order to engage CD46 with high affinity. Quantum chemical calculations showed that the CD46-binding affinity of Ad11 is significantly higher than that of Ad7. Thus, while Ad7 and Ad14 also bind CD46, the affinity and kinetics of these interactions suggest that these Ads are unlikely to use CD46 productively. The proposed mechanism is likely to determine the receptor usage of all CD46-binding Ads. 相似文献
100.