全文获取类型
收费全文 | 3780篇 |
免费 | 344篇 |
专业分类
4124篇 |
出版年
2023年 | 29篇 |
2022年 | 56篇 |
2021年 | 89篇 |
2020年 | 68篇 |
2019年 | 70篇 |
2018年 | 71篇 |
2017年 | 69篇 |
2016年 | 121篇 |
2015年 | 199篇 |
2014年 | 217篇 |
2013年 | 219篇 |
2012年 | 293篇 |
2011年 | 245篇 |
2010年 | 152篇 |
2009年 | 136篇 |
2008年 | 191篇 |
2007年 | 198篇 |
2006年 | 193篇 |
2005年 | 164篇 |
2004年 | 179篇 |
2003年 | 138篇 |
2002年 | 137篇 |
2001年 | 71篇 |
2000年 | 64篇 |
1999年 | 61篇 |
1998年 | 31篇 |
1997年 | 26篇 |
1996年 | 35篇 |
1995年 | 36篇 |
1994年 | 25篇 |
1993年 | 32篇 |
1992年 | 39篇 |
1991年 | 45篇 |
1990年 | 41篇 |
1989年 | 33篇 |
1988年 | 19篇 |
1987年 | 24篇 |
1986年 | 27篇 |
1985年 | 36篇 |
1984年 | 27篇 |
1983年 | 24篇 |
1982年 | 15篇 |
1981年 | 14篇 |
1980年 | 12篇 |
1979年 | 13篇 |
1975年 | 10篇 |
1974年 | 11篇 |
1973年 | 16篇 |
1972年 | 15篇 |
1969年 | 12篇 |
排序方式: 共有4124条查询结果,搜索用时 15 毫秒
991.
992.
Jackson-Hayes L Song S Lavrentyev EN Jansen MS Hillgartner FB Tian L Wood PA Cook GA Park EA 《The Journal of biological chemistry》2003,278(10):7964-7972
993.
994.
Expression of recombinant human GM2-activator protein in insect cells: purification and characterization by mass spectrometry 总被引:4,自引:0,他引:4
Wendeler M Lemm T Weisgerber J Hoernschemeyer J Bartelsen O Schepers U Sandhoff K 《Protein expression and purification》2003,27(2):259-266
The GM2-activator protein (GM2AP) is a small non-enzymatic cofactor assisting the enzyme beta-hexosaminidase A in the lysosomal degradation of ganglioside GM2. Mutations in the gene encoding this glycoprotein lead to a fatal neurological disorder, the AB variant of GM2-gangliosidoses. In this paper, we describe the overexpression of GM2AP in Sf21 cells using both the baculovirus expression vector system (BEVS) and a non-lytic, plasmid-based insect cell expression system (InsectSelect). For the BEVS, the cDNA encoding human GM2AP-preproprotein was cloned in the expression vector pAcMP3. The recombinant virus generated by cotransfection with linearized baculovirus DNA was used to infect Sf21 cells. For the non-lytic expression system, the cDNA of GM2AP was inserted into the vector pIZ/V5-His, which was used for the constitutive expression in stably transformed Sf21 cells. As it was shown by immunoblot analysis of the cell culture supernatant, in both expression systems the GM2AP precursor protein was efficiently secreted into the medium. Following expression in the BEVS, the GM2AP was purified by sequential chromatography on Ni-NTA-agarose and Con A-Sepharose, resulting in a yield of up to 9 mg purified protein from 1L of cell culture supernatant. Following expression in stably transformed insect cells, the secreted protein was first concentrated by cation-exchange and purified by metal-ion affinity chromatography, with a yield of 0.1 mg/L cell culture supernatant. The biological activity of the recombinant protein was demonstrated by its ability to stimulate the hexosaminidase A-catalyzed degradation of ganglioside GM2, and the homogeneity and glycosylation were assessed by ESI-TOF mass spectrometry. While the protein expression in the BEVS led to partly glycosylated and partly non-glycosylated protein, the stably transformed cells produced only glycosylated protein. In both expression systems, the glycosylation was found to be identical and corresponded to the structure (GlcNAc)(2)Fuc(Man)(3). 相似文献
995.
The distribution and systematic significance of aluminium accumulation is surveyed based on semi-quantitative tests of 166 species, representing all tribes and subfamilies of the Melastomataceae as well as a few members of related families within the Myrtales. The character is strongly present in nearly all members of the Memecylaceae and in most primitive taxa of the Melastomataceae, while non-accumulating taxa are widespread in the more derived tribes of the Melastomataceae. The variable distribution of Al accumulation in advanced clades of the latter family is probably associated with the tendency to herbaceousness, although it is unclear whether the more herbaceous representatives have developed more specialized Al-response mechanisms that may exclude high Al levels from the shoot. It is hypothesized that Al accumulation is symplesiomorphic for Melastomataceae and Memecylaceae, and that the feature characterizes the most primitive families in the Myrtales. Indeed, Al accumulation is also characteristic of Crypteroniaceae, Rhynchocalycaceae and Vochysiaceae. Crypteroniaceae and Rhynchocalycaceae probably take a basal position in a sister clade of the Memecylaceae and Melastomataceae, while Al accumulation suggests a basal position for Vochysiaceae in the Myrtaceae clade. 相似文献
996.
The t(8;21) fusion protein,AML1 ETO,specifically represses the transcription of the p14(ARF) tumor suppressor in acute myeloid leukemia 总被引:13,自引:0,他引:13
997.
Using in silico analysis we studied a novel family of repetitive DNA sequences that is present among both domains of the prokaryotes (Archaea and Bacteria), but absent from eukaryotes or viruses. This family is characterized by direct repeats, varying in size from 21 to 37 bp, interspaced by similarly sized non-repetitive sequences. To appreciate their characteri-stic structure, we will refer to this family as the clustered regularly interspaced short palindromic repeats (CRISPR). In most species with two or more CRISPR loci, these loci were flanked on one side by a common leader sequence of 300-500 b. The direct repeats and the leader sequences were conserved within a species, but dissimilar between species. The presence of multiple chromosomal CRISPR loci suggests that CRISPRs are mobile elements. Four CRISPR-associated (cas) genes were identified in CRISPR-containing prokaryotes that were absent from CRISPR-negative prokaryotes. The cas genes were invariably located adjacent to a CRISPR locus, indicating that the cas genes and CRISPR loci have a functional relationship. The cas3 gene showed motifs characteristic for helicases of the superfamily 2, and the cas4 gene showed motifs of the RecB family of exonucleases, suggesting that these genes are involved in DNA metabolism or gene expression. The spatial coherence of CRISPR and cas genes may stimulate new research on the genesis and biological role of these repeats and genes. 相似文献
998.
The sulfur-containing tripeptide glutathione (GSH) is one of the most abundant molecules in cells. Elevated levels of GSH render some types of cancer cells resistant against well-known platinum anti-cancer drugs such as cisplatin and carboplatin. Platinum complexes are often very reactive towards the cysteine residue of GSH, which detoxifies these compounds by a rapid binding mechanism. Clearly, this resistance mechanism poses a severe obstacle to any new platinum drugs designed to overcome cisplatin resistance. In the present study the cytotoxicity of dinuclear platinum compounds of the 1,1/t,t type, as developed by Farrell, is determined in human ovarium A2780 cells and in the cisplatin-resistant cell line A2780cisR, which possesses elevated levels of GSH. Further, the effect of depletion of GSH levels by L-buthionine-S,R-sulfoximine (L-BSO) in A2780cisR was investigated. The experiments show that detoxification by GSH is an effective resistance mechanism against dinuclear platinum compounds. However, the dinuclear complexes are less sensitive towards detoxification compared to cisplatin. This is probably because of the rapid binding of dinuclear cationic complexes to DNA. Compared to cisplatin, the rapid binding to DNA reduces the time during which the drug molecules are exposed to GSH in the cytosol. The reaction of a representative dinuclear compound with glutathione (pH 7, 37 degrees C) was studied in detail by 195Pt NMR. The dinuclear complex BBR3005 ([trans-PtCl(2)(NH(3))(2)(mu-H(2)N(CH(2))(6)NH(2))](2+), abbreviated as 1,1/t,t n=6), follows different pathways in the reaction with GSH, depending on the molar ratio of the reactants. When reacted in stoichiometric amounts (1:1), first a chloride on each platinum is replaced by a sulfur, forming a PtN(3)S product at -2977 ppm. After 2-3 h, this intermediate reacts further to form a sulfur-bridged N(3)Pt-S-PtN(3) species as the main product at -2811 ppm. When BBR3005 is reacted with GSH in a ratio of 1:4, the sulfur-bridged species is not observed. Instead, the final product is trans-Pt(GS)(2)(NH(3))(2) (at -3215 ppm); the same product appears if GSH is reacted with trans-PtCl(2)(NH(3))(2). Apparently, GSH first replaces the chlorides and subsequently degrades the dinuclear compound by replacement of the diaminealkyl linker. 相似文献
999.
Novotová M Zahradník I Brochier G Pavlovicová M Bigard X Ventura-Clapier R 《European journal of cell biology》2002,81(2):101-106
Tubular aggregates are specific subcellular structures that appear in skeletal muscle fibres under different pathological conditions. The origin of the tubular aggregates is generally ascribed to proliferating membranes of sarcoplasmic reticulum. There are, however, histochemical indications for the presence of mitochondrial enzymes in tubular aggregates suggesting contribution of mitochondria to the genesis of tubular aggregates. In this study we used an immunocytochemical detection technique to assess participation of mitochondria and of sarcoplasmic reticulum in derivation of tubular aggregates. The fast skeletal muscle fibres (m. gastrocnemius) of mice bearing the double invalidation for both the mitochondrial and the cytosolic isoforms of creatine kinase (CK), an enzyme involved in energetics of muscle cells, were employed as a model muscle with tubular aggregates (Steeghs et al., Cell 89, 93-103, 1997). Immunogold labelling of the bc1 complex, a specific integral protein of the inner mitochondrial membrane, provided strong signals in both the mitochondria and tubular aggregates but not in other ultrastructural components of muscle fibres. A similar strong immunogold signal was obtained when labelling for SERCA1, a specific enzyme of the sarcoplasmic reticulum membrane, in regions of typical occurrence of the sarcoplasmic reticulum and in tubular aggregates. In double labelling experiments, we found simultaneous labelling of tubular aggregates with both the bc1 and SERCA1 antibodies. It is concluded, that in CK-/- mouse both the inner mitochondrial membrane and the membrane of the sarcoplasmic reticulum participate in the formation of tubular aggregates. 相似文献
1000.
Caenorhabditis elegans has two heterotrimeric G-protein gamma subunits, gpc-1 and gpc-2. Although GPC-1 is specifically expressed in sensory neurons, it is not essential for the detection of odorants or salts. To test whether GPC-1 is involved in sensory plasticity, we developed a water soluble compound adaptation assay. The behaviour of wild-type animals in this assay confirms that prolonged exposure to salts can abolish chemo-attraction to these compounds. This process is time and concentration dependent, partly salt specific and reversible. In contrast, gpc-1 mutant animals show clear deficits in their ability to adapt to NaAc, NaCl and NH4Cl, but normal wild-type adaptation to odorants. Two other loci previously implicated in odorant adaptation, adp-1 and osm-9, are also involved in adaptation to salts. Our finding that G proteins, OSM-9 and ADP-1 are involved in taste adaptation offer the first molecular insight into this process. 相似文献