首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1766篇
  免费   157篇
  2023年   8篇
  2022年   32篇
  2021年   51篇
  2020年   33篇
  2019年   42篇
  2018年   44篇
  2017年   36篇
  2016年   71篇
  2015年   113篇
  2014年   125篇
  2013年   119篇
  2012年   170篇
  2011年   158篇
  2010年   103篇
  2009年   71篇
  2008年   114篇
  2007年   106篇
  2006年   91篇
  2005年   90篇
  2004年   89篇
  2003年   64篇
  2002年   65篇
  2001年   20篇
  2000年   6篇
  1999年   15篇
  1998年   12篇
  1997年   11篇
  1996年   9篇
  1995年   8篇
  1994年   8篇
  1993年   5篇
  1992年   7篇
  1991年   3篇
  1990年   2篇
  1989年   4篇
  1985年   2篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有1923条查询结果,搜索用时 328 毫秒
51.
52.
Environmental variables such as temperature, salinity, and irradiance are significant drivers of microalgal growth and distribution. Therefore, understanding how these variables influence fitness of potentially toxic microalgal species is particularly important. In this study, strains of the potentially harmful epibenthic dinoflagellate species Coolia palmyrensis, C. malayensis, and C. tropicalis were isolated from coastal shallow water habitats on the east coast of Australia and identified using the D1‐D3 region of the large subunit (LSU) ribosomal DNA (rDNA). To determine the environmental niche of each taxon, growth was measured across a gradient of temperature (15–30°C), salinity (20–38), and irradiance (10–200 μmol photons · m?2 · s?1). Specific growth rates of Coolia tropicalis were highest under warm temperatures (27°C), low salinities (ca. 23), and intermediate irradiance levels (150 μmol photons · m?2 · s?1), while C. malayensis showed the highest growth at moderate temperatures (24°C) and irradiance levels (150 μmol photons · m?2 · s?1) and growth rates were consistent across the range of salinity levels tested (20–38). Coolia palmyrensis had the highest growth rate of all species tested and favored moderate temperatures (24°C), oceanic salinity (35), and high irradiance (>200 μmol photons · m?2 · s?1). This is the first study to characterize the environmental niche of species from the benthic harmful algal bloom genus Coolia and provides important information to help define species distributions and inform risk management.  相似文献   
53.

We evaluated the effect of different watering regimes on the growth, chlorophyll fluorescence, phytohormones, and phenolic acids in Ceratotheca triloba (Bernh.) Hook.f., a commonly consumed African indigenous leafy vegetable. The study was conducted in the greenhouse under different watering regimes [seven (daily); three (thrice); two (twice); one (once) day(s) per week] for a period of 2 and 4-months. In each pot (7.5 cm diameter; 150 ml volume), 50 ml of water was applied per treatment. At the end of the experiment, plant growth, chlorophyll fluorescence, phytohormones, and phenolic acids were determined. A decrease in water availability resulted in a consistent decline in plant growth after a 4-month growth period. The severity of reduced water availability was more noticeable in plants watered once a week with a 1.4-fold reduction in growth and quantum efficiency of PSII (Fv/Fm) value of 0.80. The significant decline in growth and chlorophyll fluorescence was probably due to the increased production of abscisic acid (ABA) and cytokinin (CK) content together with the detected phytohormones in plants with restricted water supply. Furthermore, plants watered once a week had a trade-off between growth and phenolic acid production, with significantly higher (threefolds) concentrations of vanillic, ferulic, caffeic, and 4-coumaric acids in 4-month-old plants. Even though C. triloba grew best in well-watered soil, the plant had the potential to adapt and survive in soils with limited water supply for longer periods of growth. These findings suggest that regulation of phytohormones and phenolic acids played an important role in improving the growth of C. triloba under limited water conditions.

  相似文献   
54.
The environment where an embryo develops can be influenced by components of maternal origin, which can shape offspring phenotypes and therefore maternal fitness. In birds that produce more than one egg per clutch, females differ in the concentration of components they allocate into the yolk along the laying sequence. However, identification of processes that shape female yolk allocation and thus offspring phenotype still remains a major challenge within evolutionary ecology. A way to increase our understanding is by acknowledging that allocation patterns can differ depending on the level of analysis, such as the population versus the among‐female (within‐population) level. We employed mixed models to analyze at both levels the variation in allocation along the laying sequence of four steroid hormones, three antioxidants, and four groups of fatty acids present in the egg yolks of wild great tits Parus major. We also quantified repeatabilities for each component to study female consistency. At a population level, the concentrations/proportions of five yolk components varied along the laying sequence, implying that the developmental environment is different for offspring developing in first versus last eggs. Females varied substantially in the mean allocation of components and in their plasticity along the laying sequence. For most components, these two parameters were negatively correlated. Females were also remarkably repeatable in their allocation. Overall, our data emphasize the need to account for female variation in yolk allocation along the laying sequence at multiple levels, as variation at a population level is underpinned by different individual patterns. Our findings also highlight the importance of considering both levels of analysis in future studies investigating the causes and fitness consequences of yolk compounds. Finally, our results on female repeatability confirm that analyzing one egg per nest is a suitable way to address the consequences of yolk resource deposition for the offspring.  相似文献   
55.
Parasitic helminths infecting humans are highly prevalent infecting ∼2 billion people worldwide, causing inflammatory responses, malnutrition and anemia that are the primary cause of morbidity. In addition, helminth infections of cattle have a significant economic impact on livestock production, milk yield and fertility. The etiological agents of helminth infections are mainly Nematodes (roundworms) and Platyhelminths (flatworms). G-quadruplexes (G4) are unusual nucleic acid structures formed by G-rich sequences that can be recognized by specific G4 ligands. Here we used the G4Hunter Web Tool to identify and compare potential G4 sequences (PQS) in the nuclear and mitochondrial genomes of various helminths to identify G4 ligand targets. PQS are nonrandomly distributed in these genomes and often located in the proximity of genes. Unexpectedly, a Nematode, Ascaris lumbricoides, was found to be highly enriched in stable PQS. This species can tolerate high-stability G4 structures, which are not counter selected at all, in stark contrast to most other species. We experimentally confirmed G4 formation for sequences found in four different parasitic helminths. Small molecules able to selectively recognize G4 were found to bind to Schistosoma mansoni G4 motifs. Two of these ligands demonstrated potent activity both against larval and adult stages of this parasite.  相似文献   
56.
Triple negative breast cancer (TNBC) is an aggressive cancer, particularly prone to metastasis and is associated with poor survival outcomes. The key to unravelling the aggressiveness of TNBC lies in decoding the mechanism by which it metastasises. Cofilin-1 is a well-studied member of the cofilin family, involved in actin depolymerisation. Studies have described the diverse roles of cofilin-1 including cell motility, apoptosis and lipid metabolism. Levels of cofilin-1 have been shown to be increased in many different types of malignant cells, with increased cofilin-1 protein levels associated with poor prognosis in patients with TNBC. Extracellular vesicles (EVs) are microvesicles typically around 100 nm in size, found in all biological fluids examined to date (Lötvall et al., 2014). Proteomic studies on extracellular vesicles (EVs) have shown that cofilin-1 is amongst the most frequently detected. Moreover, decreased levels of cofilin-1 potentially inhibit the release of EVs from cells. Additionally, Cofilin-1 is essential for the maturation of EVs and may also play a key role in the establishment of the pre-metastatic niche, thus promoting tumour cell migration. Further work into the exact mechanism by which cofilin-1 advances TNBC metastasis, may potentially prevent disease progression and improve outcomes for patients with TNBC.  相似文献   
57.
58.
59.
Isopenicillin N synthase is a key enzyme in the biosynthesis of penicillin and cephalosporin antibiotics, catalyzing the oxidative ring closure of -(L--aminoadipoyl)-L-cysteinyl-D-valine to form isopenicillin N. Recent advances in our understanding of the unique chemistry of this enzyme have come through the combined application of spectroscopic, molecular genetic and crystallographic approaches and led to important new insights into the structure and function of this enzyme. Here we review new information on the nature of the endogenous ligands that constitute the ferrous iron active site, sequence evidence for a novel structural motif involved in iron binding in this and related non-heme iron dependent dioxygenases, crystal structure studies on the enzyme and its substrate complex and the impact of these and site-directed mutagenesis studies for unraveling the mechanism of the isopenicillin N synthase reaction.  相似文献   
60.
Heterologous complementation in yeast has been a successful tool for cloning and characterisation of genes from various organisms. Therefore we constructed conditionally lethal Saccharomyces cerevisiae strains by replacing the endogenous promoter from the genes of interest (glycosyltransferases) by the stringently regulated GAL1-promoter, by a technique called chromosomal promoter replacement. Such yeast strains were constructed for the genes Alg 1, Alg7, Sec59, Wbp1 involved in N-Glycosylation, the genes Gpi2, Gpi3/Spt14, Gaal, Pis1, involved in GPI-anchor biosynthesis and Dpm involved in both pathways. All strains show the expected conditionally lethal phenotype on glucose-containing medium when expression of the respective gene is turned off.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号