首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1847篇
  免费   158篇
  2005篇
  2023年   14篇
  2022年   40篇
  2021年   50篇
  2020年   33篇
  2019年   43篇
  2018年   44篇
  2017年   36篇
  2016年   71篇
  2015年   116篇
  2014年   129篇
  2013年   122篇
  2012年   177篇
  2011年   164篇
  2010年   102篇
  2009年   76篇
  2008年   118篇
  2007年   111篇
  2006年   95篇
  2005年   92篇
  2004年   93篇
  2003年   65篇
  2002年   67篇
  2001年   20篇
  2000年   6篇
  1999年   16篇
  1998年   14篇
  1997年   15篇
  1996年   11篇
  1995年   8篇
  1994年   8篇
  1993年   8篇
  1992年   8篇
  1991年   3篇
  1990年   3篇
  1989年   4篇
  1988年   1篇
  1987年   2篇
  1985年   3篇
  1984年   1篇
  1983年   4篇
  1982年   1篇
  1981年   1篇
  1975年   1篇
  1974年   1篇
  1973年   3篇
  1971年   2篇
  1970年   1篇
  1966年   1篇
  1955年   1篇
排序方式: 共有2005条查询结果,搜索用时 15 毫秒
61.
Tardigrades represent one of the main animal groups with anhydrobiotic capacity at any stage of their life cycle. The ability of tardigrades to survive repeated cycles of anhydrobiosis has rarely been studied but is of interest to understand the factors constraining anhydrobiotic survival. The main objective of this study was to investigate the patterns of survival of the eutardigrade Richtersius coronifer under repeated cycles of desiccation, and the potential effect of repeated desiccation on size, shape and number of storage cells. We also analyzed potential change in body size, gut content and frequency of mitotic storage cells. Specimens were kept under non-cultured conditions and desiccated under controlled relative humidity. After each desiccation cycle 10 specimens were selected for analysis of morphometric characteristics and mitosis. The study demonstrates that tardigrades may survive up to 6 repeated desiccations, with declining survival rates with increased number of desiccations. We found a significantly higher proportion of animals that were unable to contract properly into a tun stage during the desiccation process at the 5th and 6th desiccations. Also total number of storage cells declined at the 5th and 6th desiccations, while no effect on storage cell size was observed. The frequency of mitotic storage cells tended to decline with higher number of desiccation cycles. Our study shows that the number of consecutive cycles of anhydrobiosis that R. coronifer may undergo is limited, with increased inability for tun formation and energetic constraints as possible causal factors.  相似文献   
62.
Biosurfactants increasingly gain attention due to the manifold of possible applications and production on the basis of renewable resources. Owing to its various characteristics, Surfactin is one of the most studied biosurfactants. Since its discovery, several Surfactin producers have been identified, but their capacity to produce Surfactin has not been evaluated in a comparison. Six different Bacillus strains were analyzed regarding their ability to produce Surfactin in model fermentations with integrated foam fractionation, for in situ product enrichment and removal. Three of the investigated strains are commonly used in Surfactin production (ATCC 21332, DSM 3256, DSM 3258), whereas two Bacillus strains are described for the first time (DSM 1090, LM43a50°C) as Surfactin producers. Additionally, the Bacillus subtilis type strain DSM 10T was included in the evaluation. Interestingly, all strains, except DSM 3256, featured high values for Surfactin recovered from foam in comparison to other studies, ranging between 0.4 and 1.05 g. The fermentation process was characterized by calculating procedural parameters like substrate yield Y X/S, product yield Y P/X, specific growth rate μ, specific productivity q Surfactin, volumetric productivity q Surfactin, Surfactin and bacterial enrichment as well as Surfactin recovery. The strains differ most in specific and volumetric productivity; nevertheless, it is evident that it is not possible to name a Bacillus strain that is the most appropriate for the production of Surfactin under these conditions. In contrast, it becomes apparent that the choice of a specific strain should depend on the applied fermentation conditions.  相似文献   
63.
64.
Many gram‐positive bacteria produce bacillithiol to aid in the maintenance of redox homeostasis and degradation of toxic compounds, including the antibiotic fosfomycin. Bacillithiol is produced via a three‐enzyme pathway that includes the action of the zinc‐dependent deacetylase BshB. Previous studies identified conserved aspartate and histidine residues within the active site that are involved in metal binding and catalysis, but the enzymatic mechanism is not fully understood. Here we report two X‐ray crystallographic structures of BshB from Bacillus subtilis that provide insight into the BshB catalytic mechanism.  相似文献   
65.
Plant and Soil - In the original version of this article, equations 4 and 9 unfortunately contained errors  相似文献   
66.
Plant and Soil - Rumex alpinus is a native plant in the mountains of Europe whose distribution has partly been affected by its utilization as a vegetable and medicinal herb. The distribution of...  相似文献   
67.
Objectives:Females tend to fatigue less than males after isometric exercise, but less is clear for isotonic exercise. Further, there have been relatively few sex comparisons for fatigability of the plantar flexors (PFs). We sought to investigate potential sex differences in contractile properties after a sustained maximal voluntary isometric contraction (MVIC) and isotonic contractions.Methods:Twenty-seven physically active males (n=14; 22±2 yrs) and females (n=13; 21±2 yrs) randomly performed a 2 min MVIC and 120 concentric isotonic (30% MVIC) contractions for the PFs on separate visits. Before and after each fatiguing task, muscle activation was obtained from brief MVICs, which was followed (~2 sec) by tibial nerve stimulation at rest. Contractile properties including peak twitch, absolute and normalized time to peak twitch, and half relaxation time were calculated.Results:No sex differences existed for fatigue-induced changes in muscle activation (p=0.09-0.41; d=0.33-0.69) or contractile properties (p=0.19-0.96; d=0.06-0.94).Conclusions:Peripheral fatigue, as indicated by contractile parameters, did not differ between sexes after isometric or isotonic exercise. The PFs similar fiber type proportions between sexes or greater fiber type heterogeneity may explain why sex differences in fatigability, though common in other muscle groups (e.g., knee extensors), were not expressed in this muscle group.  相似文献   
68.
69.
The correct wiring of neuronal circuits is of crucial importance for precise neuromuscular functionality. Therefore, guidance cues provide tight spatiotemporal control of axon growth and guidance. Mice lacking the guidance cue Semaphorin 3F (Sema3F) display very specific axon wiring deficits of motor neurons in the medial aspect of the lateral motor column (LMCm). While these deficits have been investigated extensively during embryonic development, it remained unclear how Sema3F mutant mice cope with these errors postnatally. We therefore investigated whether these animals provide a suitable model for the exploration of adaptive plasticity in a system of miswired neuronal circuitry. We show that the embryonically developed wiring deficits in Sema3F mutants persist until adulthood. As a consequence, these mutants display impairments in motor coordination that improve during normal postnatal development, but never reach wildtype levels. These improvements in motor coordination were boosted to wildtype levels by housing the animals in an enriched environment starting at birth. In contrast, a delayed start of enriched environment housing, at 4 weeks after birth, did not similarly affect motor performance of Sema3F mutants. These results, which are corroborated by neuroanatomical analyses, suggest a critical period for adaptive plasticity in neuromuscular circuitry. Interestingly, the formation of perineuronal nets, which are known to close the critical period for plastic changes in other systems, was not altered between the different housing groups. However, we found significant changes in the number of excitatory synapses on limb innervating motor neurons. Thus, we propose that during the early postnatal phase, when perineuronal nets have not yet been formed around spinal motor neurons, housing in enriched environment conditions induces adaptive plasticity in the motor system by the formation of additional synaptic contacts, in order to compensate for coordination deficits.  相似文献   
70.
Retinoic acid-inducible gene I (RIG-I) is a key sensor for viral RNA in the cytosol, and it initiates a signaling cascade that leads to the establishment of an interferon (IFN)-mediated antiviral state. Because of its integral role in immune signaling, RIG-I activity must be precisely controlled. Recent studies have shown that RIG-I CARD-dependent signaling function is regulated by the dynamic balance between phosphorylation and TRIM25-induced K63-linked ubiquitination. While ubiquitination of RIG-I is critical for RIG-I''s ability to induce an antiviral IFN response, phosphorylation of RIG-I at S8 or T170 suppresses RIG-I signal-transducing activity under normal conditions. Here, we not only further define the roles of S8 and T170 phosphorylation for controlling RIG-I activity but also identify conventional protein kinase C-α (PKC-α) and PKC-β as important negative regulators of the RIG-I signaling pathway. Mutational analysis indicated that while the phosphorylation of S8 or T170 potently inhibits RIG-I downstream signaling, the dephosphorylation of RIG-I at both residues is necessary for optimal TRIM25 binding and ubiquitination-mediated RIG-I activation. Furthermore, exogenous expression, gene silencing, and specific inhibitor treatment demonstrated that PKC-α/β are the primary kinases responsible for RIG-I S8 and T170 phosphorylation. Coimmunoprecipitation showed that PKC-α/β interact with RIG-I under normal conditions, leading to its phosphorylation, which suppresses TRIM25 binding, RIG-I CARD ubiquitination, and thereby RIG-I-mediated IFN induction. PKC-α/β double-knockdown cells exhibited markedly decreased S8/T170 phosphorylation levels of RIG-I and resistance to infection by vesicular stomatitis virus. Thus, these findings demonstrate that PKC-α/β-induced RIG-I phosphorylation is a critical regulatory mechanism for controlling RIG-I antiviral signal transduction under normal conditions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号