首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91847篇
  免费   8332篇
  国内免费   43篇
  2023年   253篇
  2022年   505篇
  2021年   1619篇
  2020年   923篇
  2019年   1186篇
  2018年   1502篇
  2017年   1296篇
  2016年   2232篇
  2015年   3776篇
  2014年   4211篇
  2013年   5022篇
  2012年   6832篇
  2011年   6742篇
  2010年   4315篇
  2009年   3948篇
  2008年   5634篇
  2007年   5652篇
  2006年   5434篇
  2005年   5239篇
  2004年   5085篇
  2003年   4877篇
  2002年   4604篇
  2001年   1046篇
  2000年   830篇
  1999年   1109篇
  1998年   1315篇
  1997年   892篇
  1996年   820篇
  1995年   730篇
  1994年   679篇
  1993年   739篇
  1992年   701篇
  1991年   653篇
  1990年   598篇
  1989年   563篇
  1988年   549篇
  1987年   465篇
  1986年   415篇
  1985年   515篇
  1984年   635篇
  1983年   492篇
  1982年   578篇
  1981年   562篇
  1980年   490篇
  1979年   403篇
  1978年   410篇
  1977年   342篇
  1976年   333篇
  1975年   274篇
  1974年   321篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
The chloroplast enzyme phosphoribulokinase is reversibly deactivated by oxidation of Cys16 and Cys55 to a disulfide. Although not required for catalysis, Cys16 is an active-site residue positioned at the nucleotide-binding domain (Porter and Hartman, 1988). The hyperreactivity of Cys16 has heretofore limited further active-site characterization by chemical modification. To overcome this limitation, the partially active enzyme,S-methylated at Cys16, has been probed with a potential affinity reagent. Treatment of methylated enzyme with bromoacetylethanolamine phosphate results in essentially complete loss of catalytic activity. Inactivation follows pseudo-first-order kinetics and exhibits a rate saturation with an apparentK d of 3–4 mM. ATP, but not ribulose 5-phosphate, affords substantial protection. Complete inactivation correlates with incorporation of 1 mol of [14C]reagent per mole of enzyme subunit. Amino acid analysis of the [14C]-labeled enzyme demonstrates that only cysteine is modified, and mapping of tryptic digests shows that Cys55 is a major site of alkylation. These results indicate that Cys55 is also located in the ATP-binding domain of the active-site.  相似文献   
942.
Abstract: Suramin is a polysulfonated naphthylurea with demonstrated antineoplastic activity. Toxicity includes adrenal insufficiency and peripheral neuropathy. Although the mechanism of antitumor activity is unknown, inhibition of binding of growth factors to their receptors has been suggested. Growth factors inhibited by suramin include platelet-derived growth factor, fibroblast growth factor, transforming growth factor, epidermal growth factor, insulin-like growth factor, and nerve growth factor (NGF). In these studies, suramin was shown to be cytotoxic to PC12 cells in a dose-dependent manner. At lower doses and in surviving cells, we observed the induction of neurite outgrowth. To determine the mechanism of suramin-induced neurite outgrowth, PC12 cells were exposed to suramin and/or NGF for various time periods and treated cells were analyzed, by western blot analysis, for expression of tyrosine phosphoproteins. There was a similarity in the pattern of tyrosine-phosphorylated proteins in PC12 cells stimulated with suramin or NGF. Of particular interest was the rapid phosphorylation (by 1 min) of the high-affinity NGF (TrkA) receptor. Activation of other members of the signal-transduction cascade (Shc, p21 ras , Raf-1, ERK-1) revealed similar phosphorylation levels induced by suramin and NGF. Parallel studies were performed in rat dorsal root ganglion cultures; suramin potentiated neurite outgrowth and activated the NGF receptor on these cells. This finding of specific patterns of tyrosine phosphorylation of cellular proteins in response to suramin treatment demonstrated that suramin is a partial agonist for the NGF receptor in both PC12 cells and dorsal root ganglion neurons.  相似文献   
943.
Abstract: We examined the regulation of neostriatal tyrosine hydroxylation during acute stress, testing the hypothesis that excitatory amino acids (EAAs) contribute to the stress-evoked increase in dopamine (DA) synthesis. Dialysis probes implanted into neostriatum permitted delivery of drugs and sampling of extracellular fluid. Rats were exposed to 30 min of intermittent tail shock during infusion of an inhibitor of aromatic amino acid decarboxylase (AAAD), NSD-1015 (100 µM), and DOPA was measured in the dialysate. Tail shock was applied beginning either 15 min after the onset of NSD-1015 treatment (the initial rate of DOPA accumulation) or 75 min after the onset of treatment (when DOPA had approached steady state). Tail shock increased the steady-state levels of extracellular DOPA in neostriatum (+40%). However, there was no change in the initial rate of DOPA accumulation unless animals also received the D2 receptor antagonist eticlopride (50 nM), in which case an increase was observed (+228%). The impact of tail shock on the steady-state level of DOPA was attenuated by the D2 agonist quinpirole (100 µM), or by 2-amino-5-phosphonovalerate (APV) (100 µM) or 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) (100 µM), EAA antagonists acting at NMDA or d ,l -α-amino-3-hydroxy-5-methyl-4-isoxazole-4-propionate (AMPA) receptors, respectively. These data suggest that acute stress normally has little effect on tyrosine hydroxylation in neostriatum due to the inhibitory influence of DA in the extracellular fluid. However, when that influence is absent (e.g., during extended inhibition of DOPA decarboxylation or blockade of DA receptors), stress increases tyrosine hydroxylation via EAAs acting on NMDA and AMPA receptors. Thus, EAAs released from corticostriatal projections may stimulate DA synthesis and thereby restore dopaminergic activity under conditions in which the availability of DA for release has been compromised.  相似文献   
944.
Abstract: The Na+-glutamate cotransporters are believed to countertransport OH? and K+. Previous evidence that the velocity of glutamate uptake can exceed the acid extrusion capacity of astrocytes raised the question of whether intracellular pH can become rate limiting for glutamate uptake. Cytoplasmic buffering capacity and acid extrusion in astrocytes are partially HCO3? dependent. Also, it was reported recently that raising extracellular [K+] alkalinizes astrocyte cytoplasm by an HCO3?-dependent mechanism. Here, we have compared glutamate uptake in HCO3?-buffered and HCO3?-depleted solutions at varying [K+]. We observed a pronounced stimulation of glutamate uptake by extracellular K+ (3–24 mM) that was substantially HCO3? dependent and affected preferentially the uptake of high concentrations (>25 µM) of glutamate. Stimulation of uptake by low extracellular [K+] (1.5–3 mM) was less dependent on HCO3?. Potassium-induced stimulation of uptake was weaker in rat astrocyte cultures than in mouse. The effects of Ba2+ and amiloride on glutamate uptake, as well as the HCO3?-dependent stimulatory effects of K+ and the species difference, all related consistently to effects on intracellular pH. The effects on uptake, however, were much larger than predicted by the associated changes in electrochemical gradient of OH?. A “bimodal” scheme for glutamate transport can account qualitatively for the observed correlation between intracellular pH and velocity of glutamate uptake.  相似文献   
945.
Abstract: A readily soluble 5'-nucleotidase was purified 1,800-fold from rat brain 105,000- g supernatant. The enzyme showed similarity to the 5'-nucleotidase ectoenzyme of plasma membranes. It exhibited a low K m for AMP, which was preferred over IMP as substrate. It was inhibited by free ATP and ADP and by α,β-methylene ADP. The enzyme appeared to be a glycoprotein on the basis of its interaction with concanavalin A. It contained a phosphatidylinositol moiety because treatment with phosphatidylinositol-specific phospholipase C increased its hydrophilicity. A single subunit of Mr = 54,300 ± 800 was observed, which is appreciably smaller than published values for the 5'-nucleotidase ectoenzyme or for other low- K m"soluble" 5'-nucleotidases. The soluble 5'-nucleotidase showed an elution profile on AMP-Sepharose affinity chromatography or on Mono Q ion-exchange chromatography different from that of the brain ectoenzyme. Forty-two percent of the soluble 5'-nucleotidase in brain 105,000- g supernatant did not bind to a Mono Q ion-exchange column because of its interaction with a soluble factor. This factor could be removed by chromatography on concanavalin A-Sepharose. The factor had the novel property of increasing the sensitivity of the purified soluble 5'-nucleotidase toward the inhibitor ATP by 20-fold. This factor was also able to increase the inhibition of brain 5'-nucleotidase ectoenzyme by ATP.  相似文献   
946.
Abstract: Neural cell adhesion molecule (N-CAM) is involved in cell-cell interactions during synaptogenesis, morphogenesis, and plasticity of the nervous system. Disturbances in synaptic restructuring and neural plasticity may be related to the pathogenesis of several neuropsychiatric diseases, including mood disorders and schizophrenia. Disturbances in brain cellular function may alter concentrations of N-CAM in the CSF. Soluble human N-CAM proteins are detectable in the CSF but are minor constituents of serum. We have recently found an increase in N-CAM content in the CSF of patients with schizophrenia. Although the pathogenesis of both schizophrenia and mood disorders is unknown, ventriculomegaly, decreased temporal lobe volume, and subcortical structural abnormalities have been reported for both disorders. We have therefore measured N-CAM concentrations in the CSF of patients with mood disorder. There were significant increases in amounts of N-CAM immunoreactive proteins, primarily the 120-kDa band, in the CSF of psychiatric inpatients with bipolar mood disorder type I and recurrent unipolar major depression. There were no differences in bipolar mood disorder type II patients as compared with normals. There were no significant effects of medication treatment on N-CAM concentrations. It is possible that the 120-kDa N-CAM band present in the CSF is derived from CNS cells as a secreted soluble N-CAM isoform. Our results suggest the possibility of latent state-related disturbances in N-CAM cellular function, i.e., residue from a previous episode, or abnormal N-CAM turnover in the CNS of patients with mood disorder.  相似文献   
947.
Abstract: Early ethanol exposure alters the proliferative activity of glial and neuronal precursors in the developing CNS. The present study tests the hypothesis that ethanol-induced alterations in cell proliferation result from interference with growth factors. An in vitro model of astroglia (C6 astrocytoma cells) was used to study the effects of ethanol on proliferation mediated by basic fibroblast growth factor (bFGF). bFGF stimulated the proliferation of C6 cells. This bFGF-enhanced proliferation was evident by increases in total cell number, DNA synthesis (as measured by [3H]thymidine incorporation), and the number of cells that took up bromodeoxyuridine. A synthetic peptide that specifically blocked the binding of bFGF to its high-affinity receptor completely abolished the proliferation-promoting effect of bFGF. The action of another mitogen for C6 cells, insulin-like growth factor-1, was not affected by this peptide. Therefore, the bFGF-stimulated proliferation was mediated through a specific bFGF receptor. Ethanol inhibited bFGF-mediated proliferation in a concentration-dependent manner. Ethanol concentrations of 100 and 200 mg/dl partially inhibited bFGF-mediated proliferation (by 58 and 74%, respectively), whereas concentrations of ≥400 mg/dl completely abolished the growth-stimulating effect of bFGF. Our data show that ethanol alters proliferative activity of C6 cells by disrupting the action of bFGF. The target of ethanol neurotoxicity is a receptor-mediated activity. bFGF can affect cell proliferation by a non-receptor-mediated intracellular pathway, but ethanol does not have an impact on this pathway.  相似文献   
948.
Transmembrane 4 superfamily (TM4SF) molecules are predominantly mammalian cell surface glycoproteins that are thought to transduce signals mediating cell development, activation, and motility. Analysis of the Genpept sequence database reveals YKK8, a novel member of the TM4SF in the nematode,Caenorhabditis elegans. YKK8 is a putative 27.4-kDa protein encoded by a gene on chromosome III of theC. elegans genome (Wilson et al. [1994]Nature 368:32–38). The assignment of YKK8 to the TM4SF is justified by three criteria: statistical comparison of protein sequences, conserved TM4SF protein sequence motifs, and conserved TM4SF intron/exon boundaries in the genomic sequence. The discovery of a TM4SF molecule in the nematode extends this superfamily to a more primitive branch of the phylogenetic tree and suggests a fundamental role for TM4SF molecules in biology. Correspondence to: M.G. Tomlinson  相似文献   
949.
One of the four glutathione-S-transferases (GST) that is overproduced in the insecticide-resistant Cornell-R strain of the housefly (Musca domestica) produces an activity that degrades the insecticide dimethyl parathion and conjugates glutathione to lindane. In earlier work, it was shown that the resistant Cornell-R carries an amplification, probably a duplication, of one or more of its GST loci and that this amplification is directly related to resistance. Using polymerase chain reaction (PCR) amplification with genomic DNA, multiple copies of the gene encoding the parathion-degrading activity (called MdGst-3) were subcloned from both the ancestral, insecticide-susceptible strain BPM and from the insecticide-resistant Cornell-R. In BPM, three different MdGst-3 genes were identified while in Cornell-R, 12 different MdGst-3 sequences were found that, though closely related to ancestral genes, had diverged by a few nucleotides. This diversity in MdGst-3 genomic sequences in Cornell-R is reflected in the expressed sequences, as sampled through a cDNA bank. Population heterozygosity cannot account for these multiple GST genes. We suggest that selection for resistance to insecticides has resulted in not only amplification of the MdGst-3 genes but also in the divergence of sequence between the amplified copies. Received: 22 November 1995 / Accepted: 23 February 1996  相似文献   
950.
Among the unicellular protists, several of which are parasitic, some of the most divergent eukaryotic species are found. The evolutionary distances between protists are so large that even slowly evolving proteins like histones are strongly divergent. In this study we isolated cDNA and genomic histone H3 and H4 clones fromTrichomonas vaginalis. Two histone H3 and three histone H4 genes were detected on three genomic clones with one complete H3 and two complete H4 sequences. H3 and H4 genes were divergently transcribed with very short intergenic regions of only 194 bp, which containedT. vaginalis-specific as well as histone-specific putative promoter elements. Southern blot analysis showed that there may be several more histone gene pairs. The two complete histone H4 genes were different on the nucleotide level but encoded the same amino acid sequence. Comparison of the amino acid sequences of theT. vaginalis H3 and H4 histones with sequences from animals, fungi, and plants as well as other protists revealed a significant divergence not only from the sequences in multicellular organisms but especially from the sequences in other protists likeEntamoeba histolytica, Trypanosoma cruzi, andLeishmania infantum.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号