首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87031篇
  免费   7794篇
  国内免费   42篇
  2023年   284篇
  2022年   711篇
  2021年   1557篇
  2020年   884篇
  2019年   1112篇
  2018年   1443篇
  2017年   1248篇
  2016年   2149篇
  2015年   3648篇
  2014年   4075篇
  2013年   4854篇
  2012年   6588篇
  2011年   6513篇
  2010年   4196篇
  2009年   3820篇
  2008年   5470篇
  2007年   5460篇
  2006年   5286篇
  2005年   5062篇
  2004年   4924篇
  2003年   4713篇
  2002年   4447篇
  2001年   907篇
  2000年   666篇
  1999年   1005篇
  1998年   1250篇
  1997年   844篇
  1996年   764篇
  1995年   668篇
  1994年   632篇
  1993年   680篇
  1992年   595篇
  1991年   544篇
  1990年   498篇
  1989年   427篇
  1988年   446篇
  1987年   366篇
  1986年   335篇
  1985年   427篇
  1984年   546篇
  1983年   423篇
  1982年   516篇
  1981年   500篇
  1980年   429篇
  1979年   314篇
  1978年   345篇
  1977年   293篇
  1976年   289篇
  1975年   230篇
  1974年   259篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
91.
Chemokines and their ligands play a critical role in enabling chronic lymphocytic leukaemia (CLL) cells access to protective microenvironmental niches within tissues, ultimately resulting in chemoresistance and relapse: disruption of these signaling pathways has become a novel therapeutic approach in CLL. The tyrosine kinase inhibitor dasatinib inhibits migration of several cell lines from solid-organ tumours, but effects on CLL cells have not been reported. We studied the effect of clinically achievable concentrations of dasatinib on signaling induced by the chemokine CXCL12 through its'' receptor CXCR4, which is highly expressed on CLL cells. Dasatinib pre-treatment inhibited Akt and ERK phosphorylation in CLL cells upon stimulation with CXCL12. Dasatinib also significantly diminished the rapid increase in actin polymerisation observed in CLL cells following CXCL12 stimulation. Moreover, the drug significantly inhibited chemotaxis in a transwell assay, and reduced the percentage of cells able to migrate beneath a CXCL12-expressing murine stromal cell line. Dasatinib also abrogated the anti-apoptotic effect of prolonged CXCL12 stimulation on cultured CLL cells. These data suggest that dasatinib, akin to other small molecule kinase inhibitors targeting the B-cell receptor signaling pathway, may redistribute CLL cells from protective tissue niches to the peripheral blood, and support the investigation of dasatinib in combination strategies.  相似文献   
92.
Alfalfa (Medicago sativa L. cv. Vernal) nodules were separatedinto host plant fractions and fractions of rhizobial originby differential centrifugation and sedimentation equilibriumcentrifugation. Both NAD- and NADP-linked isocitrate dehydrogenase(70%, 90%) and glutamate dehydrogenase activities (90%, 83%)were located primarily (percent total nodule activity) in thefractions of plant origin and their specific activities werehighest in the fractions of plant origin. More than 50% of thenodules' total activity of both glutamine synthetase and NAD-glutamatesynthase and greater than 90% of the total glutamate oxaloacetatetransaminase activity was located in plant fractions. However,the fractions of rhizobial origin had the highest specific activitiesof glutamine synthetase and glutamate synthase. (Received September 5, 1981; Accepted December 7, 1981)  相似文献   
93.
DNA topoisomerase I (Top1p) catalyzes topological changes in DNA and is the cellular target of the antitumor agent camptothecin (CPT). Non-CPT drugs that target Top1p, such as indolocarbazoles, are under clinical development. However, whether the cytotoxicity of indolocarbazoles derives from Top1p poisoning remains unclear. To further investigate indolocarbazole mechanism, rebeccamycin R-3 activity was examined in vitro and in yeast. Using a series of Top1p mutants, where substitution of residues around the active site tyrosine has well-defined effects on enzyme catalysis, we show that catalytically active, CPT-resistant enzymes remain sensitive to R-3. This indolocarbazole did not inhibit yeast Top1p activity, yet was effective in stabilizing Top1p-DNA complexes. Similar results were obtained with human Top1p, when Ser or His were substituted for Asn-722. The mutations altered enzyme function and sensitivity to CPT, yet R-3 poisoning of Top1p was unaffected. Moreover, top1delta, rad52delta yeast cells expressing human Top1p, but not catalytically inactive Top1Y723Fp, were sensitive to R-3. These data support hTop1p as the cellular target of R-3 and indicate that distinct drug-enzyme interactions at the active site are required for efficient poisoning by R-3 or CPT. Furthermore, resistance to one poison may potentiate cell sensitivity to structurally distinct compounds that also target Top1p.  相似文献   
94.
Cardiolipin (CL) is responsible for modulation of activities of various enzymes involved in oxidative phosphorylation. Although energy production decreases in heart failure (HF), regulation of cardiolipin during HF development is unknown. Enzymes involved in cardiac cardiolipin synthesis and remodeling were studied in spontaneously hypertensive HF (SHHF) rats, explanted hearts from human HF patients, and nonfailing Sprague Dawley (SD) rats. The biosynthetic enzymes cytidinediphosphatediacylglycerol synthetase (CDS), phosphatidylglycerolphosphate synthase (PGPS) and cardiolipin synthase (CLS) were investigated. Mitochondrial CDS activity and CDS-1 mRNA increased in HF whereas CDS-2 mRNA in SHHF and humans, not in SD rats, decreased. PGPS activity, but not mRNA, increased in SHHF. CLS activity and mRNA decreased in SHHF, but mRNA was not significantly altered in humans. Cardiolipin remodeling enzymes, monolysocardiolipin acyltransferase (MLCL AT) and tafazzin, showed variable changes during HF. MLCL AT activity increased in SHHF. Tafazzin mRNA decreased in SHHF and human HF, but not in SD rats. The gene expression of acyl-CoA: lysocardiolipin acyltransferase-1, an endoplasmic reticulum MLCL AT, remained unaltered in SHHF rats. The results provide mechanisms whereby both cardiolipin biosynthesis and remodeling are altered during HF. Increases in CDS-1, PGPS, and MLCL AT suggest compensatory mechanisms during the development of HF. Human and SD data imply that similar trends may occur in human HF, but not during nonpathological aging, consistent with previous cardiolipin studies.  相似文献   
95.
An unusual filamentous, gliding bacterium was found in a few hot springs in Oregon where it formed a nearly unispecific top layer of microbial mats. It contained a bacteriochlorophyll a-like pigment and an abundance of carotenoids. There were no chlorosomes or additional chlorophylls. The organism was aerotolerant and appeared to be photoheterotrophic. It was successfully co-cultured with an aerobic chemoheterotroph in a medium containing glucose and casamino acids. Although it has many characteristics in common with the genus Chloroflexus, the lack of chlorosomes and bacteriochlorophyll c and the aerobic nature of this organism indicate that it should be placed in a new genus. This conclusion is supported by 5S rRNA nucleotide sequence data.  相似文献   
96.
A recombination map of the human X-chromosome   总被引:2,自引:0,他引:2  
Summary A family with 11 normal boys has been typed with DNA probes spanning the whole of the X-chromosome to observe directly the recombination events in 11 meioses from one female. This has (a) identified apparent recombination hot-spots on the X-chromosome; (b) shown the positions and numbers of cross-overs that have occurred in the p and q arms; (c) not shown any cross-overs in the centromeric region and (d) enabled the calculation of the genetic length of the X-chromosome.  相似文献   
97.
98.
99.
100.
Ribulosebisphosphate carboxylase/oxygenase (EC 4.1.1.39) (rubisco) must be fully activated in order to catalyze the maximum rates of photosynthesis observed in plants. Activation of the isolated enzyme occurs spontaneously, but conditions required to observe full activation are inconsistent with those known to occur in illuminated chloroplasts. Genetic studies with a nutant of Arabidopsis thaliana incapable of activating rubisco linked two chloroplast polypeptides to the activation process in vivo. Using a reconstituted light activation system, it was possible to demonstrate the participation of a chloroplast protein in rubisco activation. These results indicate that a specific chloroplast enzyme, rubisco activase, catalyzes the activation of rubisco in vivo.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号