全文获取类型
收费全文 | 85867篇 |
免费 | 7586篇 |
国内免费 | 46篇 |
专业分类
93499篇 |
出版年
2023年 | 281篇 |
2022年 | 707篇 |
2021年 | 1548篇 |
2020年 | 879篇 |
2019年 | 1108篇 |
2018年 | 1439篇 |
2017年 | 1241篇 |
2016年 | 2136篇 |
2015年 | 3630篇 |
2014年 | 4047篇 |
2013年 | 4811篇 |
2012年 | 6536篇 |
2011年 | 6481篇 |
2010年 | 4171篇 |
2009年 | 3798篇 |
2008年 | 5428篇 |
2007年 | 5431篇 |
2006年 | 5234篇 |
2005年 | 5031篇 |
2004年 | 4892篇 |
2003年 | 4668篇 |
2002年 | 4401篇 |
2001年 | 859篇 |
2000年 | 628篇 |
1999年 | 961篇 |
1998年 | 1230篇 |
1997年 | 821篇 |
1996年 | 742篇 |
1995年 | 653篇 |
1994年 | 616篇 |
1993年 | 666篇 |
1992年 | 553篇 |
1991年 | 520篇 |
1990年 | 461篇 |
1989年 | 397篇 |
1988年 | 420篇 |
1987年 | 342篇 |
1986年 | 317篇 |
1985年 | 400篇 |
1984年 | 518篇 |
1983年 | 401篇 |
1982年 | 501篇 |
1981年 | 486篇 |
1980年 | 414篇 |
1979年 | 295篇 |
1978年 | 323篇 |
1977年 | 281篇 |
1976年 | 263篇 |
1975年 | 204篇 |
1974年 | 241篇 |
排序方式: 共有10000条查询结果,搜索用时 62 毫秒
921.
Heather J. M. Weir Tracey K. Murray Patrick G. Kehoe Seth Love Eric M. Verdin Michael J. O’Neill Jon D. Lane Nina Balthasar 《PloS one》2012,7(11)
Progressive mitochondrial dysfunction contributes to neuronal degeneration in age-mediated disease. An essential regulator of mitochondrial function is the deacetylase, sirtuin 3 (SIRT3). Here we investigate a role for CNS Sirt3 in mitochondrial responses to reactive oxygen species (ROS)- and Alzheimer’s disease (AD)-mediated stress. Pharmacological augmentation of mitochondrial ROS increases Sirt3 expression in primary hippocampal culture with SIRT3 over-expression being neuroprotective. Furthermore, Sirt3 expression mirrors spatiotemporal deposition of β-amyloid in an AD mouse model and is also upregulated in AD patient temporal neocortex. Thus, our data suggest a role for SIRT3 in mechanisms sensing and tackling ROS- and AD-mediated mitochondrial stress. 相似文献
922.
923.
Andrew J. Stocking Rula A. Deeb Amparo E. Flores William Stringfellow Jeffrey Talley Richard Brownell Michael C. Kavanaugh 《Biodegradation》2000,11(2-3):187-201
The addition of methyl tert-butyl ether (MTBE) to gasoline has resulted in public uncertainty regarding the continued reliance on biological processes for gasoline remediation. Despite this concern, researchers have shown that MTBE can be effectively degraded in the laboratory under aerobic conditions using pure and mixed cultures with half-lives ranging from 0.04 to 29 days. Ex-situ aerobic fixed-film and aerobic suspended growth bioreactor studies have demonstrated decreases in MTBE concentrations of 83% and 96% with hydraulic residence times of 0.3 hrs and 3 days, respectively. In microcosm and field studies, aerobic biodegradation half-lives range from 2 to 693 days. These half-lives have been shown to decrease with increasing dissolved oxygen concentrations and, in some cases, with the addition of exogenous MTBE-degraders. MTBE concentrations have also been observed to decrease under anaerobic conditions; however, these rates are not as well defined. Several detailed field case studies describing the use of ex-situ reactors, natural attenuation, and bioaugmentation are presented in this paper and demonstrate the potential for successful remediation of MTBE-contaminated aquifers. In conclusion, a substantial amount of literature is available which demonstratesthat the in-situ biodegradation of MTBE is contingent on achieving aerobic conditions in the contaminated aquifer. 相似文献
924.
CRISPR-Cas systems are a diverse family of RNA-protein complexes in bacteria that target foreign DNA sequences for cleavage. Derivatives of these complexes have been engineered to cleave specific target sequences depending on the sequence of a CRISPR-derived guide RNA (gRNA) and the source of the Cas9 protein. Important considerations for the design of gRNAs are to maximize aimed activity at the desired target site while minimizing off-target cleavage. Because of the rapid advances in the understanding of existing CRISPR-Cas9-derived RNA-guided nucleases and the development of novel RNA-guided nuclease systems, it is critical to have computational tools that can accommodate a wide range of different parameters for the design of target-specific RNA-guided nuclease systems. We have developed CRISPRseek, a highly flexible, open source software package to identify gRNAs that target a given input sequence while minimizing off-target cleavage at other sites within any selected genome. CRISPRseek will identify potential gRNAs that target a sequence of interest for CRISPR-Cas9 systems from different bacterial species and generate a cleavage score for potential off-target sequences utilizing published or user-supplied weight matrices with position-specific mismatch penalty scores. Identified gRNAs may be further filtered to only include those that occur in paired orientations for increased specificity and/or those that overlap restriction enzyme sites. For applications where gRNAs are desired to discriminate between two related sequences, CRISPRseek can rank gRNAs based on the difference between predicted cleavage scores in each input sequence. CRISPRseek is implemented as a Bioconductor package within the R statistical programming environment, allowing it to be incorporated into computational pipelines to automate the design of gRNAs for target sequences identified in a wide variety of genome-wide analyses. CRISPRseek is available under the GNU General Public Licence v3.0 at http://www.bioconductor.org. 相似文献
925.
Multidrug resistance (MDR) is a significant challenge to effective cancer chemotherapy treatment. However, the development of a drug delivery system that allows for the sustained release of combined drugs with improved vesicle stability could overcome MDR in cancer cells. To achieve this, we have demonstrated codelivery of doxorubicin (Dox) and paclitaxel (PTX) via a crosslinked multilamellar vesicle (cMLV). This combinatorial delivery system achieves enhanced drug accumulation and retention, in turn resulting in improved cytotoxicity against tumor cells, including drug-resistant cells. Moreover, this delivery approach significantly overcomes MDR by reducing the expression of P-glycoprotein (P-gp) in cancer cells, thus improving antitumor activity in vivo. Thus, by enhancing drug delivery to tumors and lowering the apoptotic threshold of individual drugs, this combinatorial delivery system represents a potentially promising multimodal therapeutic strategy to overcome MDR in cancer therapy. 相似文献
926.
In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html.
Electronic supplementary material
The online version of this article (doi:10.1186/s13059-014-0550-8) contains supplementary material, which is available to authorized users. 相似文献927.
Ruth Tevlin Adrian McArdle Charles K.F. Chan John Pluvinage Graham G. Walmsley Taylor Wearda Owen Marecic Michael S. Hu Kevin J. Paik Kshemendra Senarath-Yapa David A. Atashroo Elizabeth R. Zielins Derrick C. Wan Irving L. Weissman Michael T. Longaker 《Journal of visualized experiments : JoVE》2014,(93)
Osteoclasts are highly specialized cells that are derived from the monocyte/macrophage lineage of the bone marrow. Their unique ability to resorb both the organic and inorganic matrices of bone means that they play a key role in regulating skeletal remodeling. Together, osteoblasts and osteoclasts are responsible for the dynamic coupling process that involves both bone resorption and bone formation acting together to maintain the normal skeleton during health and disease.As the principal bone-resorbing cell in the body, changes in osteoclast differentiation or function can result in profound effects in the body. Diseases associated with altered osteoclast function can range in severity from lethal neonatal disease due to failure to form a marrow space for hematopoiesis, to more commonly observed pathologies such as osteoporosis, in which excessive osteoclastic bone resorption predisposes to fracture formation.An ability to isolate osteoclasts in high numbers in vitro has allowed for significant advances in the understanding of the bone remodeling cycle and has paved the way for the discovery of novel therapeutic strategies that combat these diseases. Here, we describe a protocol to isolate and cultivate osteoclasts from mouse bone marrow that will yield large numbers of osteoclasts. 相似文献
928.
Ryan Greenway Rachel McNemee Alexander Okamoto Martin Plath Lenin Arias‐Rodriguez Michael Tobler 《Evolution; international journal of organic evolution》2019,73(6):1200-1212
Divergence of genital traits among lineages has the potential to serve as a reproductive isolating barrier when copulation, insemination, and fertilization are inhibited by incompatibilities between female and male genitalia. Despite widespread evidence for genital trait diversity among closely related lineages and coevolution of female and male genitalia within lineages, few studies have investigated genital evolution during the early stages of speciation. We quantified genital variation in replicated population pairs of Poecilia mexicana with ongoing ecological speciation between sulfidic (H2S containing) and nearby nonsulfidic habitats. These analyses revealed rapid and correlated divergence of female and male genitalia across evolutionarily independent population pairs exposed to divergent selection regimes. Both sexes exhibited convergent evolution of genital traits among populations inhabiting similar habitat types. Our results demonstrate that genital evolution can occur during the early stages of speciation‐with‐gene‐flow, potentially as a result of variation in the intensity of sexual conflict among populations. Our results suggest genitalia may contribute to early stages of divergence and challenge the generality of previously suggested mechanisms of genital evolution in poeciliids. 相似文献
929.
Michela Mariani Michael‐Shawn Fletcher Simon Haberle Hahjung Chin Atun Zawadzki Geraldine Jacobsen 《Global Change Biology》2019,25(6):2030-2042
Climate change is affecting the distribution of species and the functioning of ecosystems. For species that are slow growing and poorly dispersed, climate change can force a lag between the distributions of species and the geographic distributions of their climatic envelopes, exposing species to the risk of extinction. Climate also governs the resilience of species and ecosystems to disturbance, such as wildfire. Here we use species distribution modelling and palaeoecology to assess and test the impact of vegetation–climate disequilibrium on the resilience of an endangered fire‐sensitive rainforest community to fires. First, we modelled the probability of occurrence of Athrotaxis spp. and Nothofagus gunnii rainforest in Tasmania (hereon “montane rainforest”) as a function of climate. We then analysed three pollen and charcoal records spanning the last 7,500 cal year BP from within both high (n = 1) and low (n = 2) probability of occurrence areas. Our study indicates that climatic change between 3,000 and 4,000 cal year bp induced a disequilibrium between montane rainforests and climate that drove a loss of resilience of these communities. Current and future climate change are likely to shift the geographic distribution of the climatic envelopes of this plant community further, suggesting that current high‐resilience locations will face a reduction in resilience. Coupled with the forecast of increasing fire activity in southern temperate regions, this heralds a significant threat to this and other slow growing, poorly dispersed and fire sensitive forest systems that are common in the southern mid to high latitudes. 相似文献
930.
Michael Meyer Maya Ben‐Yehuda Greenwald Theresa Rauschendorfer Catharina Snger Marko Jukic Haruka Iizuka Fumimasa Kubo Lin Chen David M. Ornitz Sabine Werner 《Journal of cellular and molecular medicine》2020,24(2):1774-1785
Fibroblast growth factors (FGFs) are key regulators of tissue development, homeostasis and repair, and abnormal FGF signalling is associated with various human diseases. In human and murine epidermis, FGF receptor 3 (FGFR3) activation causes benign skin tumours, but the consequences of FGFR3 deficiency in this tissue have not been determined. Here, we show that FGFR3 in keratinocytes is dispensable for mouse skin development, homeostasis and wound repair. However, the defect in the epidermal barrier and the resulting inflammatory skin disease that develops in mice lacking FGFR1 and FGFR2 in keratinocytes were further aggravated upon additional loss of FGFR3. This caused fibroblast activation and fibrosis in the FGFR1/FGFR2 double‐knockout mice and even more in mice lacking all three FGFRs, revealing functional redundancy of FGFR3 with FGFR1 and FGFR2 for maintaining the epidermal barrier. Taken together, our study demonstrates that FGFR1, FGFR2 and FGFR3 act together to maintain epidermal integrity and cutaneous homeostasis, with FGFR2 being the dominant receptor. 相似文献