首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   85863篇
  免费   7580篇
  国内免费   43篇
  93486篇
  2023年   281篇
  2022年   707篇
  2021年   1548篇
  2020年   879篇
  2019年   1108篇
  2018年   1439篇
  2017年   1241篇
  2016年   2136篇
  2015年   3630篇
  2014年   4047篇
  2013年   4811篇
  2012年   6536篇
  2011年   6481篇
  2010年   4170篇
  2009年   3798篇
  2008年   5428篇
  2007年   5431篇
  2006年   5233篇
  2005年   5031篇
  2004年   4891篇
  2003年   4667篇
  2002年   4401篇
  2001年   857篇
  2000年   622篇
  1999年   959篇
  1998年   1230篇
  1997年   821篇
  1996年   742篇
  1995年   653篇
  1994年   616篇
  1993年   666篇
  1992年   553篇
  1991年   520篇
  1990年   461篇
  1989年   397篇
  1988年   420篇
  1987年   342篇
  1986年   317篇
  1985年   399篇
  1984年   518篇
  1983年   401篇
  1982年   501篇
  1981年   486篇
  1980年   414篇
  1979年   295篇
  1978年   323篇
  1977年   281篇
  1976年   263篇
  1975年   206篇
  1974年   241篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
971.
Protein L is a multi domain cell wall constituent of certain strains of Peptostreptococcus magnus which binds to the variable domain of immunoglobulin κ-light chains. A single immunoglobulin-binding domain of Mr = 9000 from this protein has been isolated and crystallized. The crystals are of space group P42212, with cell dimensions a = b = 66.9 Å, c = 68.3 Å, and diffract to at least 2.2 Å resolution. The asymmetric unit of the crystal contains two molecules of the protein L domain, related by a noncrystallographic 2-fold axis, as revealed by a self-rotation function calculated with native diffraction data. © 1995 Wiley-Liss, Inc.  相似文献   
972.
Water-protein interactions drive protein folding, stabilize the folded structure, and influence molecular recognition and catalysis. We analyzed the closest protein contacts of 10,837 water molecules in crystallographic structures to define a specific hydrophilicity scale reflecting specific rather than bulk solvent interactions. The tendencies of different atom and residue types to be the nearest protein neighbors of bound water molecules correlated with other hydrophobicity scales, verified the relevance of crystallographically determined water positions, and provided a direct experimental measure of water affinity in the context of the folded protein. This specific hydrophilicity was highly correlated with hydrogen-bonding capacity, and correlated better with experimental than computationally derived measures of partitioning between aqueous and organic phases. Atoms with related chemistry clustered with respect to the number of bound water molecules. Neutral and negatively charged oxygen atoms were the most hydrophilic, followed by positively-charged then neutral nitrogen atoms, followed by carbon and sulfur atoms. Agreement between observed side-chain specific hydrophilicity values and values derived from the atomic hydrophilicity scale showed that hydrophilicity values can be synthesized for different functional groups, such as unusual side or main chains, discontinuous epitopes, and drug molecules. Two methods of atomic hydrophilicity analysis provided a measure of complementarity in the interfaces of trypsin:pancreatic trypsin inhibitor and HIV protease:U-75875 inhibitor complexes. © 1995 Wiley-Liss, Inc.  相似文献   
973.
A complex of human interferon-γ (IFN- γ) with the soluble extracellular domain of the IFN- γ receptor α-chain (IFN-γ-R) has been crystallised. Crystals of the complex were grown using PEG 4000 as the precipitating agent in the presence of β-octyl glucoside. The receptor-ligand complex crystallizes in a monoclinic space group and diffracts to about 3.0 Å resolution. Isomorphous crystals have been obtained with complex containing selenomethionine and cysteine mutants of IFN-γ, which may facilitate the ongoing X-ray structure determination. © 1995 Wiley-Liss, Inc.  相似文献   
974.
The prediction experiment reveals that fold recognition has become a powerful tool in structural biology. We applied our fold recognition technique to 13 target sequences. In two cases, replication terminating protein and prosequence of subtilisin, the predicted structures are very similar to the experimentally determined folds. For the first time, in a public blind test, the unknown structures of proteins have been predicted ahead of experiment to an accuracy approaching molecular detail. In two other cases the approximate folds have been predicted correctly. According to the assessors there were 12 recognizable folds among the target proteins. In our postprediction analysis we find that in 7 cases our fold recognition technique is successful. In several of the remaining cases the predicted folds have interesting features in common with the experimental results. We present our procedure, discuss the results, and comment on several fundamental and technical problems encountered in fold recognition. © 1995 Wiley-Liss, Inc.  相似文献   
975.
The Drosophila runt gene, which controls early events in embryogenesis, has been shown to have homologues in human and mouse. The human gene on 21q22 is involved in the t(8;21) associated with acute myeloid leukemia. Two mouse runt-like loci encoding DNA-binding proteins have been identified. We report here the isolation and partial sequence of a molecular clone of a third mouse runt-like locus. By using a panel of somatic cell hybrids and interspecific backcross mice, we map the novel locus to the telomeric region of mouse chromosome 4.  相似文献   
976.
Summary The parameters for HN chemical shift calculations of proteins have been determined using data from high-resolution crystal structures of 15 proteins. Employing these chemical shift calculations for HN protons, the observed secondary structure chemical shift trends of HN protons, i.e., upfield shifts on helix formation and downfield shifts on -sheet formation, are discussed. Our calculations suggest that the main reason for the difference in NH chemical shifts in helices and sheets is not an effect from the directly hydrogen-bonded carbonyl, which gives rise to downfield shifts in both cases, but arises from an additional upfield shift predicted in helices and originating in residues i-2 and i-3. The calculations also explain the well-known relationship between amide proton shifts and hydrogen-bond lengths. In addition, the HN chemical shifts of the distorted amphipathic helices of the GCN4 leucine zipper are calculated and used to characterise the solution structure of the helices. By comparing the calculated and experimental shifts, it is shown that in general the agreement is good between residues 15 and 28. The most interesting observation is that in the N-terminal half of the zipper, although both calculated and experimental shifts show clear periodicity, they are no longer in phase. This suggests that for the N-terminal half, in the true average solution structure the period of the helix coil is longer by roughly one residue compared to the NMR structures.  相似文献   
977.
Summary The 48 amino acid peptides -Aga-IVA and -Aga-IVB are the first agents known to specifically block P-type calcium channels in mammalian brain, thus complementing the existing suite of pharmacological tools used for characterizing calcium channels. These peptides provide a new set of probes for studies aimed at elucidating the structural basis underlying the subtype specificity of calcium channel antagonists. We used 288 NMR-derived constraints in a protocol combining distance geometry and molecular dynamics employing the program DGII, followed by energy minimization with Discover to derive the three-dimensional structure of -Aga-IVB. The toxin consists of a well-defined core region, comprising seven solvent-shielded residues and a well-defined triple-stranded -sheet. Four loop regions have average backbone rms deviations between 0.38 and 1.31 Å, two of which are well-defined type-II -turns. Other structural features include disordered C- and N-termini and several conserved basic amino acids that are clustered on one face of the molecule. The reported structure suggests a possible surface for interaction with the channel. This surface contains amino acids that are identical to those of another known P-type calcium channel antagonist, -Aga-IVA, and is rich in basic residues that may have a role in binding to the anionic sites in the extracellular regions of the calcium channel.Abbreviations TOCSY total correlated spectroscopy - NOESY nuclear Overhauser enhancement spectroscopy - COSY correlated spectroscopy  相似文献   
978.
Abstract Burkholderia cepacia (Pseudomonas cepacia) is now recognised as an important pathogen in cystic fibrosis patients, and several reports have suggested that sputum-culture-proven colonisation occurs despite the presence of specific antibody. In an attempt to establish the use of antibody studies as diagnostic and prognostic indicators of B. cepacia infection, we have examined the IgG response to B. cepacia outer membrane proteins and lipopolysaccharide in patients also colonised with P. aeruginosa . The B. cepacia strains were grown in a modified iron-depleted chemically defined medium and outer membrane components examined by SDS-PAGE and immunoblotting. IgG antibodies were detected against B. cepacia outer membrane antigens, which were not diminished by extensive preadsorption with P. aeruginosa . The response to B. cepacia O-antigen could be readily removed by adsorption of serum either with B. cepacia whole cells or purified LPS, whereas we were unable to adsorb anti-outer membrane protein antibodies using B. cepacia whole cells. The inability to adsorb anti-outer membrane protein antibodies using B. cepacia whole cells maybe due to non-exposed surface epitopes. Several B. cepacia sputum-culture negative patients colonised with P. aeruginosa had antibodies directed against B. cepacia outer membrane protein. This study suggests that there is a specific anti- B. cepacia LPS IgG response, which is not due to antibodies cross-reactive with P. aeruginosa . Our studies indicate that much of the B. cepacia anti-outer membrane protein response is specific and not attributable to reactivity against co-migrating LPS.  相似文献   
979.
Summary Opioid peptides are thought to interact with the cell membrane in their biological journey to the membrane-bound receptor. Both organic solvents and model membranes have been used previously to determine the stable solution conformations of peptide hormones. Leucine enkephalin has been studied in a number of different environments, but with limited resolution. Here it is shown that leucine enkephalin forms a stable type IV -turn structure in dodecylphosphocholine micelles. We have observed a highly solvent-shielded amide proton with no evidence for a complementary hydrogen bond acceptor. The structural details of the peptide as determined by NMR spectroscopy in solution are described.  相似文献   
980.
We built a passive compartmental model of a cortical spiny stellate cell from the barrel cortex of the mouse that had been reconstructed in its entirety from electron microscopic analysis of serial thin sections (White and Rock, 1980). Morphological data included dimensions of soma and all five dendrites, neck lengths and head diameters of all 380 spines (a uniform neck diameter of 0.1 m was assumed), locations of all symmetrical and asymmetrical (axo-spinous) synapses, and locations of all 43 thalamocortical (TC) synapses (as identified from the consequences of a prior thalamic lesion). In the model, unitary excitatory synaptic inputs had a peak conductance change of 0.5 nS at 0.2 msec; conclusions were robust over a wide range of assumed passive-membrane parameters. When recorded at the soma, all unitary EPSPs, which were initiated at the spine heads, were relatively iso-efficient; each produced about 1 mV somatic depolarization regardless of spine location or geometry. However, in the spine heads there was a twentyfold variation in EPSP amplitudes, largely reflecting the variation in spine neck lengths. Synchronous activation of the TC synapses produced a somatic depolarization probably sufficient to fire the neuron; doubling or halving the TC spine neck diameters had only minimal effect on the amplitude of the composite TC-EPSP. As have others, we also conclude that from a somato-centric viewpoint, changes in spine geometry would have relatively little direct influence on amplitudes of EPSPs recorded at the soma, especially for a distributed, synchronously activated input such as the TC pathway. However, consideration of the detailed morphology of an entire neuron indicates that, from a dendro-centric point of view, changes in spine dimension can have a very significant electrical impact on local processing near the sites of input.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号