首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87450篇
  免费   7784篇
  国内免费   42篇
  2023年   239篇
  2022年   710篇
  2021年   1565篇
  2020年   887篇
  2019年   1125篇
  2018年   1455篇
  2017年   1252篇
  2016年   2154篇
  2015年   3669篇
  2014年   4105篇
  2013年   4878篇
  2012年   6628篇
  2011年   6553篇
  2010年   4236篇
  2009年   3840篇
  2008年   5491篇
  2007年   5499篇
  2006年   5307篇
  2005年   5103篇
  2004年   4951篇
  2003年   4726篇
  2002年   4458篇
  2001年   914篇
  2000年   699篇
  1999年   1005篇
  1998年   1263篇
  1997年   844篇
  1996年   775篇
  1995年   680篇
  1994年   643篇
  1993年   699篇
  1992年   594篇
  1991年   559篇
  1990年   497篇
  1989年   425篇
  1988年   456篇
  1987年   362篇
  1986年   345篇
  1985年   424篇
  1984年   543篇
  1983年   416篇
  1982年   511篇
  1981年   494篇
  1980年   424篇
  1979年   307篇
  1978年   338篇
  1977年   294篇
  1976年   270篇
  1975年   213篇
  1974年   254篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
151.
A common polymorphism in the complement factor H gene (rs1061170, Y402H) is associated with a high risk of age-related macular degeneration (AMD). In the present study we hypothesized that healthy young subjects homozygous for the high-risk haplotype (CC) show abnormal choroidal blood flow (ChBF) regulation decades before potentially developing the disease. A total of 100 healthy young subjects were included in the present study, of which 4 subjects were excluded due to problems with genotyping or blood flow measurements. ChBF was measured continuously using laser Doppler flowmetry while the subjects performed isometric exercise (squatting) for 6 minutes. The increase in ChBF was less pronounced than the response in ocular perfusion pressure (OPP), indicating for some degree of choroidal blood flow regulation. Eighteen subjects were homozygous for C, 47 subjects were homozygous for T and 31 subjects were heterozygous (CT). The increase in OPP during isometric exercise was not different between groups. By contrast the increase in ChBF was more pronounced in subjects homozygous for the high risk C allele (p = 0.041). This was also evident from the pressure/flow relationship, where the increase in ChBF in homozygous C carriers started at lower OPPs as compared to the other groups. Our data indicate that the regulation of ChBF is abnormal in rs1061170 CC carriers. So far this polymorphism has been linked to age related macular degeneration (AMD) mainly via inflammatory pathways associated with the complement system dysfunction. Our results indicate that it could also be related to vascular factors that have been implicated in AMD pathogenesis.  相似文献   
152.
Fumarate restores to flagella of cytoplasm-free, CheY- containing envelopes of Escherichia coli and Salmonella typhimurium the ability to switch from one direction of rotation to another. To examine the specificity of this effect, we studied flagellar rotation of envelopes which contained, instead of fumarate, one of its analogues. Malate, maleate and succinate promoted switching, but to a lesser extent than fumarate. These observations were made both with wild-type envelopes and with envelopes of a mutant which lacks the enzymes succinate dehydrogenase and fumarase, indicating that the switching-promoting activity of the analogues was not caused by their conversion to fumarate. Aspartate and lactate did not promote switching. Using strains defective in specific enzymes of the tricarboxylic acid cycle and lacking the cytoplasmic chemotaxis proteins as well as some of the chemo-taxis receptors, we demonstrated that, in intact bacteria, unlike the situation in envelopes, fumarate promoted clockwise rotation via its metabolites acetyl phosphate and acetyladenylate, but did not promote switching (presumably because of the presence of cytoplasmic fumarate). All of the results are consistent with the notion that fumarate acts as a switching factor, presumably by lowering the activation energy of switching. Thus fumarate and some of its metabolites may serve as a connection point between the bacterial metabolic state and chemotactic behaviour.  相似文献   
153.
154.
The overproduction of specialized metabolites requires plants to manage the inherent burdens, including the risk of self-intoxication. We present a control mechanism that stops the expression of phytoalexin biosynthetic enzymes by blocking the antecedent signal transduction cascade. Cultured cells of Eschscholzia californica (Papaveraceae) and Catharanthus roseus (Apocynaceae) overproduce benzophenanthridine alkaloids and monoterpenoid indole alkaloids, respectively, in response to microbial elicitors. In both plants, an elicitor-responsive phospholipase A2 (PLA2) at the plasma membrane generates signal molecules that initiate the induction of biosynthetic enzymes. The final alkaloids produced in the respective plant inhibit the respective PLA, a negative feedback that prevents continuous overexpression. The selective inhibition by alkaloids from the class produced in the “self” plant could be transferred to leaves of Nicotiana benthamiana via recombinant expression of PLA2. The 3D homology model of each PLA2 displays a binding pocket that specifically accommodates alkaloids of the class produced by the same plant, but not of the other class; for example, C. roseus PLA2 only accommodates C. roseus alkaloids. The interaction energies of docked alkaloids correlate with their selective inhibition of PLA2 activity. The existence in two evolutionary distant plants of phospholipases A2 that discriminate “self-made” from “foreign” alkaloids reveals molecular fingerprints left in signal enzymes during the evolution of species-specific, cytotoxic phytoalexins.  相似文献   
155.
156.
157.
158.
Small, early life stages, such as zebrafish embryos are increasingly used to assess the biological effects of chemical compounds in vivo. However, behavioural screens of such organisms are challenging in terms of both data collection (culture techniques, drug delivery and imaging) and data evaluation (very large data sets), restricting the use of high throughput systems compared to in vitro assays. Here, we combine the use of a microfluidic flow-through culture system, or BioWell plate, with a novel motion analysis technique, (sparse optic flow - SOF) followed by spectral analysis (discrete Fourier transformation - DFT), as a first step towards automating data extraction and analysis for such screenings. Replicate zebrafish embryos housed in a BioWell plate within a custom-built imaging system were subject to a chemical exposure (1.5% ethanol). Embryo movement was videoed before (30 min), during (60 min) and after (60 min) exposure and SOF was then used to extract data on movement (angles of rotation and angular changes to the centre of mass of embryos). DFT was subsequently used to quantify the movement patterns exhibited during these periods and Multidimensional Scaling and ANOSIM were used to test for differences. Motion analysis revealed that zebrafish had significantly altered movements during both the second half of the alcohol exposure period and also the second half of the recovery period compared to their pre-treatment movements. Manual quantification of tail flicking revealed the same differences between exposure-periods as detected using the automated approach. However, the automated approach also incorporates other movements visible in the organism such as blood flow and heart beat, and has greater power to discern environmentally-driven changes in the behaviour and physiology of organisms. We suggest that combining these technologies could provide a highly efficient, high throughput assay, for assessing whole embryo responses to various drugs and chemicals.  相似文献   
159.
Abstract

The use of composite beads consisting of a 6 μm polystyrene core with 30 nm surface-bound silica particles to routine automatic oligodeoxynucleotide (ODN) synthesis is described.  相似文献   
160.
Tissue plasminogen activator (tPA) has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg) into plasmin. In this study, using plasminogen knockout (Plg-/-) mice and their Plg-native littermates (Plg+/+), we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group) were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo). A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA) was injected into the left motor cortex to anterogradely label the corticospinal tract (CST). Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p<0.01). BDA-positive axonal density of the CST originating from the contralesional cortex in the denervated side of the cervical gray matter was significantly reduced in Plg-/- mice compared with Plg+/+ mice (p<0.05). The behavioral outcome was highly correlated with the midline-crossing CST axonal density (R2>0.82, p<0.01). Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号