首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1443篇
  免费   83篇
  2023年   8篇
  2022年   3篇
  2021年   12篇
  2020年   21篇
  2019年   26篇
  2018年   62篇
  2017年   45篇
  2016年   67篇
  2015年   92篇
  2014年   107篇
  2013年   105篇
  2012年   126篇
  2011年   131篇
  2010年   76篇
  2009年   47篇
  2008年   91篇
  2007年   95篇
  2006年   92篇
  2005年   72篇
  2004年   63篇
  2003年   43篇
  2002年   40篇
  2001年   10篇
  2000年   9篇
  1999年   3篇
  1998年   8篇
  1996年   4篇
  1995年   4篇
  1994年   2篇
  1993年   6篇
  1992年   4篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1988年   2篇
  1987年   6篇
  1985年   5篇
  1984年   9篇
  1982年   2篇
  1981年   2篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   1篇
  1974年   2篇
  1973年   2篇
  1972年   1篇
  1966年   1篇
  1960年   2篇
  1952年   2篇
排序方式: 共有1526条查询结果,搜索用时 562 毫秒
911.
912.
913.
914.
Microbial biogeography studies expend much effort in determining whether environmental selection or stochastic processes related to dispersal are more important in shaping community composition. While both types of factors are possibly influential, it is tacitly assumed that protists, or microbial eukaryotes in general, behave biogeographically as prokaryotes because of their small physical size. However, direct evidence for this in exactly the same environment and at the same phylogenetic depth is lacking. In this study, we compared the structure of both prokaryotic and eukaryotic components of microbial communities forming biofilms on mineral substrates in different geographic locations at the level of small-subunit (SSU) rRNA-based operational taxonomic units (OTUs). These microbial communities are subjected to strong environmental selection and contain significant proportions of extremophilic microorganisms adapted to desiccation and UV radiation. We find that the nature of the substrate as well as climatic variables and geography influences microbial community structure. However, constrained correspondence analyses and distance-decay curves showed that, whereas the substrate type was the most significant factor structuring bacterial communities, geographic location was the most influential factor for microbial eukaryote communities. Biological explanations implying a higher dispersal success for bacteria combined with more mobile lifestyles for predatory protists may underlie these different prokaryote versus microbial eukaryote biogeographic patterns.  相似文献   
915.
The involvement of parkin, PINK1, and DJ1 in mitochondrial dysfunction, oxidative injury, and impaired functioning of the ubiquitin-proteasome system (UPS) has been intensively investigated in light of Parkinson's disease (PD) pathogenesis. However, these pathological mechanisms are not restricted to PD, but are common denominators of various neurodegenerative and neuroinflammatory disorders. It is therefore conceivable that parkin, PINK1, and DJ1 are also linked to the pathogenesis of other neurological diseases, including Alzheimer's disease (AD) and multiple sclerosis (MS). The importance of these proteins in mechanisms underlying neurodegeneration is reflected by the neuroprotective properties of parkin, DJ1, and PINK1 in counteracting oxidative stress and improvement of mitochondrial and UPS functioning. This review provides a concise overview on the cellular functions of the E3 ubiquitin ligase parkin, the mitochondrial kinase PINK1, and the cytoprotective protein DJ1 and their involvement and interplay in processes underlying neurodegeneration in common neurological disorders.  相似文献   
916.
For the first time a direct and practical approach to the synthesis of eight amide derivatives of polyether antibiotic-salinomycin is described. The structure of allyl amide (3a) has been determined using X-ray diffraction. Salinomycin and its amide derivatives have been screened for their in vitro antimicrobial activity against the typical gram-positive cocci, gram-negative rods and yeast-like organisms, as well as against a series of clinical isolates of methicillin-resistant Staphylococcus aureus and methicillin-sensitive S. aureus. Amides of salinomycin have been found to show a wide range of activities, from inactive at 256 μg/mL to active with MIC of 2 μg/mL, comparable with salinomycin. As a result, phenyl amide (3b) was found to be the most active salinomycin derivative against gram-positive bacteria, MRSA and MSSA.  相似文献   
917.
Here, we describe our updated mathematical model of Arabidopsis thaliana Columbia metabolism, which adds the glucosinolates, an important group of secondary metabolites, to the reactions of primary metabolism. In so doing, we also describe the evolutionary origins of the enzymes involved in glucosinolate synthesis. We use this model to address a long-standing question in plant evolutionary biology: whether or not apparently defensive compounds such as glucosinolates are metabolically costly to produce. We use flux balance analysis to estimate the flux through every metabolic reaction in the model both when glucosinolates are synthesized and when they are absent. As a result, we can compare the metabolic costs of cell synthesis with and without these compounds, as well as inferring which reactions have their flux altered by glucosinolate synthesis. We find that glucosinolate production can increase photosynthetic requirements by at least 15% and that this cost is specific to the suite of glucosinolates found in A.?thaliana, with other combinations of glucosinolates being even more costly. These observations suggest that glucosinolates have evolved, and indeed likely continue to evolve, for herbivory defense, since only this interpretation explains the maintenance of such costly traits.  相似文献   
918.
919.
920.
Primary ciliary dyskinesia (PCD) is a rare (1/20,000), multisystem disease with a complex phenotype caused by the impaired motility of cilia/flagella, usually related to ultrastructural defects of these organelles. Mutations in genes encoding radial spoke head (RSPH) proteins, elements of the ciliary ultrastructure, have been recently described. However, the relative involvement of RSPH genes in PCD pathogenesis remained unknown, due to a small number of PCD families examined for mutations in these genes. The purpose of this study was to estimate the involvement of RSPH4A and RSPH9 in PCD pathogenesis among East Europeans (West Slavs), and to shed more light on ultrastructural ciliary defects caused by mutations in these genes. The coding sequences of RSPH4A and RSPH9 were screened in PCD patients from 184 families, using single strand conformational polymorphism analysis and sequencing. Two previously described (Q109X; R490X) and two new RSPH4A mutations (W356X; IVS3_2-5del), in/around exons 1 and 3, were identified; no mutations were found in RSPH9. We estimate that mutations in RSPH4A, but not in RSPH9, are responsible for 2-3% of cases in the East European PCD population (4% in PCD families without situs inversus; 11% in families preselected for microtubular defects). Analysis of the SNP-haplotype background provided insight into the ancestry of repetitively found mutations (Q109X; R490X; IVS3_2-5del), but further studies involving other PCD cohorts are required to elucidate whether these mutations are specific for Slavic people or spread among other European populations. Ultrastructural defects associated with the mutations were analyzed in the transmission electron microscope images; almost half of the ciliary cross-sections examined in patients with RSPH4A mutations had the microtubule transposition phenotype (9+0 and 8+1 pattern). While microtubule transposition was a prevalent ultrastructural defect in cilia from patients with RSPH4A mutations, similar defects were also observed in PCD patients with mutations in other genes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号