首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18696篇
  免费   1372篇
  国内免费   5篇
  2021年   128篇
  2020年   110篇
  2019年   115篇
  2018年   292篇
  2017年   259篇
  2016年   447篇
  2015年   776篇
  2014年   724篇
  2013年   1055篇
  2012年   1282篇
  2011年   1248篇
  2010年   753篇
  2009年   597篇
  2008年   1103篇
  2007年   1110篇
  2006年   1057篇
  2005年   1002篇
  2004年   929篇
  2003年   856篇
  2002年   813篇
  2001年   408篇
  2000年   437篇
  1999年   393篇
  1998年   188篇
  1997年   147篇
  1996年   137篇
  1995年   140篇
  1994年   141篇
  1993年   115篇
  1992年   241篇
  1991年   235篇
  1990年   219篇
  1989年   170篇
  1988年   183篇
  1987年   160篇
  1986年   145篇
  1985年   134篇
  1984年   119篇
  1983年   96篇
  1982年   93篇
  1981年   120篇
  1980年   89篇
  1979年   118篇
  1978年   106篇
  1977年   87篇
  1976年   100篇
  1975年   79篇
  1974年   97篇
  1973年   70篇
  1971年   82篇
排序方式: 共有10000条查询结果,搜索用时 453 毫秒
961.
The perturbation induced by mono- and divalent cations on the thermophilicity and thermostability of Solfolobus solfataricus -glycosidase, a hyperthermophilic tetrameric enzyme, has been investigated by spectroscopic and computational simulation methods to ascertain the Hofmeister effects on two strategic protein regions identified previously. Specifically, (1) an extra segment (83–124), present only in the sequence of hyperthermophilic glycosidases and recognized as an important thermostability determinant for the enzyme structure; and (2) a restricted area of the subunit interface responsible for the quaternary structure maintenance. Mono- and divalent cations inhibit to a different extent the -glycosidase activity, whose kinetic constants show an apparent competitive inhibition of the catalytic process that reflects the Hofmeister order. The thermostability is also affected by the nature and charge of the cations, reaching maximal effects for the case of Mg2+. Fourier transform infrared spectroscopy has revealed very small changes in the protein secondary structure in the presence of the investigated cations at 20 °C, while large effects on the protein melting temperatures are observed. Computational analysis of the enzyme structure has identified negative patches on the accessible surface of the two identified regions. Following the Hofmeister series, cations weaken the existing electrostatic network that links the extra segment to the remaining protein matrix. In particular, the perturbing action of cations could involve the ionic pair interactions E107–R245 and E109–R185, thus leading to a local destructuring of the extra segment as a possible starting event for thermal destabilization. A detailed investigation of the electrostatic network at the A–C intermolecular interface of Sgly after energy minimization suggests that cations could cause a strong attenuation of the ion pair interactions E474–K72 and D473–R402, with consequent partial dissociation of the tetrameric structure.Abbreviations Amide I amide I band in a 2H2O medium - EM energy minimization - ONPG o-nitrophenyl--d-galactopyranoside - Sgly Escherichia coli expressed Sulfolobus solfataricus -glycosidase  相似文献   
962.
Previous studies in rat have demonstrated decreased number of mitochondria and uncoupling of oxidative phosphorylation after administration of glucocorticoids but at supraphysiological doses and using synthetic glucocorticoids. To analyze the relationships between corticosterone levels (the natural glucocorticoid in rat) and muscle mitochondrial metabolism, Lewis and Fischer 344 rats were bilaterally adrenalectomized and implanted with different corticosterone pellets (0, 12, 50, 100, and 200 mg of corticosterone). Rats bearing a corticosterone pellet delivering corticosterone at concentrations in the range of chronic stress-induced levels presented a lower amount of functional muscle mitochondria with a decrease in cytochrome c oxidase and citrate synthase activities and a depletion of mitochondrial DNA. Moreover, a strain difference in tissue sensitivity to corticosterone was depicted both in end-organ sensitive to glucocorticoids (body, thymus, and adrenal weights) and in muscle mitochondrial metabolism (Lewis > Fischer). Interestingly, this strain difference was also observed in the absence of corticosterone, with a deleterious effect on muscle mitochondrial metabolism in Fischer rats, whereas no effects were observed in Lewis rats. We therefore postulate that corticosterone is necessary for muscle mitochondrial metabolism exerting its effects in Fischer rats with an inverted U curve, whereby too little (only Fischer) or too much (Fischer and Lewis) corticosterone is deleterious to muscle mitochondrial metabolism. In conclusion, we propose a general model of coordinate regulation of mitochondrial energetic metabolism by glucocorticoids.  相似文献   
963.
Radiation enteritis, a common complication of radiation therapy for abdominal and pelvic cancers, is characterized by severe transmural fibrosis associated with mesenchymal cell activation, tissue disorganization, and deposition of fibrillar collagen. To investigate the mechanisms involved in this pathological accumulation of extracellular matrix, we studied gene expression of matrix components along with that of genes involved in matrix remodeling, matrix metalloproteinases (MMPs), and tissue inhibitors of metalloproteinases (TIMPs). Hybrid selection on high-density cDNA array, real-time RT-PCR, gelatin zymography and immunohistochemistry were used to characterize the mRNA expression profile, activity, and tissue location of extracellular matrix-related genes in radiation enteritis compared with healthy ileum. cDNA array analysis revealed a strong induction of genes coding for collagens I, III, IV, VI, and VIII, SPARC, and tenascin-C, extracellular-matrix degrading enzymes (MMP-1, -2, -3, -14, -18+19), and metalloproteinase inhibitors (TIMP-1, -2, plasminogen activator inhibitor-1) in radiation enteritis. This increase was correlated with the degree of infiltration of the mucosa by inflammatory cells, and the presence of differentiated mesenchymal cells in the submucosa and muscularis propria. Despite the fact that expression of collagens, MMPs, and TIMPs simultaneously increase, quantification of net collagen deposition shows an overall accumulation of collagen. Our results indicate that late radiation enteritis tissues are subjected to active process of fibrogenesis as well as fibrolysis, with a balance toward fibrogenesis. This demonstrates that established fibrotic tissue is not scarred fixed tissue but is subjected to a dynamic remodeling process.  相似文献   
964.
Soluble guanylyl cyclase (sGC) is a key enzyme of the NO-cGMP pathway which is believed to mediate vasoprotective actions. In cardiovascular diseases such as hypercholesterolemia and atherosclerosis, these important functions of the vascular endothelium are strongly impaired. One of the major reasons for this so-called endothelial dysfunction is the increased vascular generation of reactive oxygen species such as superoxide and peroxynitrite. We aimed to investigate whether superoxide and peroxynitrite impacts on the expression and function of sGC and if such a mechanism occurs in a hypercholestemia-induced atherosclerosis. Our experiments with isolated rat aortic rings showed that extracellular superoxide has no effect on expression and function of sGC, while subjection of these rings to continuously generated extracellular peroxynitrite reduced sGC activity. Furthermore, intracellular superoxide as generated by LY85385 almost completely inhibited sGC-activity and increased its expression. In the cholesterol-fed White New Zealand rabbit, we found a 3.5-fold upregulation of sGC, while basal and NO-stimulated sGC-activities were only slightly enhanced and the vasodilator potency of SNAP was decreased by 10-fold. A great portion of the overexpressed dysfunctional sGC is located in intimal lesions. Finally, platelet sGC-activity and the anti-aggregatory effect of SNAP were not changed. These data suggest that endothelial dysfunction in hypercholesterolemia is associated with an oxidative stress-dependent and reversible overexpression of a dysfunctional vascular sGC, while inhibition of platelet sGC-activity is most likely not involved in hypercholesterolemia-induced platelet hyperreactivity.  相似文献   
965.
In proteins, methionine residues are primary targets for oxidation. Methionine oxidation is reversed by methionine sulfoxide reductases A and B, a class of highly conserved enzymes. Ffh protein, a component of the ubiquitous signal recognition particle, contains a methionine-rich domain, interacting with a small 4.5S RNA. In vitro analyses reported here show that: (i) oxidized Ffh is unable to bind 4.5S RNA, (ii) oxidized Ffh contains methionine sulfoxide residues, (iii) oxidized Ffh is a substrate for MsrA and MsrB enzymes; and (iv) MsrA/B repairing activities allow oxidized Ffh to recover 4.5S RNA-binding abilities. In vivo analyses reveal that: (i) Ffh synthesized in the msrA msrB mutant contains methionine sulfoxide residues and is unstable, (ii) msrA msrB mutant requires high levels of Ffh synthesis for growth and (iii) msrA msrB mutation leads to defects in Ffh-dependent targeting of MalF. We conclude that MsrA and MsrB are required to repair Ffh oxidized by reactive oxygen species produced by aerobic metabolism, establishing an as-yet undescribed link between protein targeting and oxidation.  相似文献   
966.
To investigate how the complex organization of heterochromatin is reproduced at each replication cycle, we examined the fate of HP1-rich pericentric domains in mouse cells. We find that replication occurs mainly at the surface of these domains where both PCNA and chromatin assembly factor 1 (CAF-1) are located. Pulse-chase experiments combined with high-resolution analysis and 3D modeling show that within 90 min newly replicated DNA become internalized inside the domain. Remarkably, during this time period, a specific subset of HP1 molecules (alpha and gamma) coinciding with CAF-1 and replicative sites is resistant to RNase treatment. Furthermore, these replication-associated HP1 molecules are detected in Suv39 knockout cells, which otherwise lack stable HP1 staining at pericentric heterochromatin. This replicative pool of HP1 molecules disappears completely following p150CAF-1 siRNA treatment. We conclude that during replication, the interaction of HP1 with p150CAF-1 is essential to promote delivery of HP1 molecules to heterochromatic sites, where they are subsequently retained by further interactions with methylated H3-K9 and RNA.  相似文献   
967.
Several quinolines were synthesized and evaluated in vitro against several parasites (Trypanosoma brucei, T. cruzi, Leishmania infantum, L. amazonensis, Plasmodium falciparum). Then, they were evaluated in vitro (at 10 microM), against HTLV-1 transformed cells. A few of them displayed interesting activities, comparable to the reference drugs.  相似文献   
968.
A structure-activity study was performed by synthesis on N,N'-disubstitution of 3-aminobenzo[c] and [d]azepin-2-one 2 and 3 to afford potent and specific farnesyl transferase inhibitors with low nM enzymatic and cellular activities.  相似文献   
969.
Telomerase and telomere maintenance are emerging targets for the treatment of human cancers. We report here on the targeting of the telomere-telomerase complex with a series of small molecules based on an acridine platform. A series of 3,6-bisamidoacridines with extended 9-anilino sidechains were designed and synthesised as potential telomeric G-quadruplex DNA (G4) interacting compounds. G4-stabilisation was assessed using a high-throughput FRET (fluorescence resonance energy transfer) assay and telomerase inhibition quantified by a modified TRAP (telomerase repeat amplification protocol) method. Within the series, the compounds showed significant G4-stabilising ability (Delta T(m) values of 25-36 degrees C at 1 microM concentration) and telomerase inhibition in the nanomolar region ((tel)EC(50) values of 80-318 nM). Furthermore, a direct correlation between the FRET and TRAP assays was observed, supporting the use of the rapid screening FRET assay for early assessment of potential G4-stabilising telomerase inhibitors.  相似文献   
970.
The synthesis and calcimimetic activities of two new families of compounds are described. The most active derivatives of the first family, N(2)-(2-chloro-(or 4-fluoro-)benzyl)-N(1)-(1-(1-naphthyl)ethyl)-3-phenylpropane-1,2-diamine (4b and 4d, respectively, tested at 10 microM) produced 98+/-6% and 95+/-4%, respectively, of the maximal stimulation of [(3)H]inositol phosphates production obtained by 10mM Ca(2+) in CHO cells expressing the rat calcium sensing receptor (CaSR). The second family of calcimimetics was obtained by conformationally restraining the compounds of type 4 to provide the 2-aminomethyl derivatives 5. One of these compounds, (R)-2-[N-(1-(1-naphthyl)ethyl)aminomethyl]indole ((R)-5a, calindol), displayed improved calcimimetic activity compared to 4b and 4d as well as stereoselectivity. In the presence of 2mM Ca(2+), calindol stimulated [(3)H]inositol phosphates accumulation with an EC(50) of 1.0+/-0.1 or 0.31+/-0.05 microM in cells expressing the rat or the human CaSR, respectively. The calcimimetic activities of these novel compounds were shown to be due to a specific interaction with the CaSR.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号