首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   244篇
  免费   17篇
  261篇
  2023年   1篇
  2022年   5篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   17篇
  2014年   17篇
  2013年   15篇
  2012年   30篇
  2011年   14篇
  2010年   7篇
  2009年   12篇
  2008年   17篇
  2007年   12篇
  2006年   16篇
  2005年   14篇
  2004年   7篇
  2003年   13篇
  2002年   8篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有261条查询结果,搜索用时 0 毫秒
21.
22.
Membrane glycoprotein M6a, which belongs to the tetraspan proteolipid protein family, promotes structural plasticity in neurons and cell lines by unknown mechanisms. This glycoprotein is encoded by Gpm6a, a stress‐regulated gene. The hippocampus of animals chronically stressed by either psychosocial or physical stressors shows decreased M6a expression. Stressed Gpm6a‐null mice develop a claustrophobia‐like phenotype. In humans, de novo duplication of GPM6A results in learning/behavioral abnormalities, and two single‐nucleotide polymorphisms (SNPs) in the non‐coding region are linked to mood disorders. Here, we studied M6a dimerization in neuronal membranes and its functional relevance. We showed that the self‐interaction of M6a transmembrane domains (TMDs) might be driving M6a dimerization, which is required to induce filopodia formation. Glycine mutants located in TMD2 and TMD4 of M6a affected its dimerization, thus preventing M6a‐induced filopodia formation in neurons. In silico analysis of three non‐synonymous SNPs located in the coding region of TMDs suggested that these mutations induce protein instability. Indeed, these SNPs prevented M6a from being functional in neurons, owing to decreased stability, dimerization or improper folding. Interestingly, SNP3 (W141R), which caused endoplasmic reticulum retention, is equivalent to that mutated in PLP1, W161L, which causes demyelinating Pelizaeus–Merzbacher disease.

  相似文献   

23.
Recently, plant‐based repellents have been proposed as a potential alternative to classic pesticides against pest wasps, in certain scenarios. Here, the repellent effect of Dysphania multifida essential oil and one of its main terpenoid components, α‐terpinene, were tested under field conditions with natural populations of wasps in Patagonia Argentina. D. multifida essential oil (paico), as well as α‐terpinene, repelled V. germanica wasps in the field. A strong avoidance of food baits treated with the essential oil or α‐terpinene was observed in choice and no‐choice tests. In no‐choice tests, the time it took wasps to arrive at the bait was significantly greater in treated baits than in control baits. Also, the total number of arriving wasps in 30 min was significantly greater in untreated baits in comparison with treated baits, under similar environmental conditions and wasp density. As the wasps’ flight season progressed, wasp density and motivation for proteinaceous food sources increased. This was evidenced by a greater total number of wasps in untreated baits with time. On the contrary, the number of wasps in treated baits remained low throughout the peak season. Both the paico essential oil and the α‐terpinene act as powerful repellents for V. germanica wasps, generating an avoidance response to treated food sources. Thus, these compounds have potential to be used as repellents to prevent wasps’ approaches and foraging, when applied in close proximity to a food source.  相似文献   
24.
Glutaredoxins are thiol oxidoreductases that regulate protein redox state. In Saccharomyces cerevisiae, Grx1 and Grx2 are cytosolic dithiol glutaredoxins, whereas Grx3, Grx4, and Grx5 are monothiol glutaredoxins. Grx5 locates at the mitochondrial matrix and is needed for iron/sulfur cluster biogenesis. Its absence causes phenotypes such as inactivation of iron/sulfur enzymes and sensitivity to oxidative stress. Whereas Grx5 contains a single glutaredoxin domain, in Grx3 and Grx4 a thioredoxin-like domain is fused to the glutaredoxin domain. Here we have shown that Grx3 locates at the nucleus and that the thioredoxin-like domain is required for such location. We have addressed the functional divergence among glutaredoxins by targeting Grx2/3/4 molecules to the mitochondrial matrix using the Grx5 targeting sequence. The mitochondrial forms of Grx3 and Grx4 partially rescue the defects of a grx5 null mutant. On the contrary, mitochondrially targeted Grx2 does not suppress the mutant phenotype. Both the thioredoxin-like and glutaredoxin domains are needed for the mitochondrial activity of Grx3, although none of the cysteine residues at the thioredoxin-like domain is required for rescue of the grx5 phenotypes. We have concluded that dithiol glutaredoxins are functionally divergent from monothiol ones, but the latter can interchange their biological activities when compartment barriers are surpassed.  相似文献   
25.
Idiopathic pulmonary fibrosis (IPF) is difficult to diagnose because of numerous interstitial lung diseases with similar symptoms. As serum DNA has proven useful for early lung cancer detection, we aimed to define the relevance of this marker in discriminating IPF from other fibrotic and nonfibrotic/nonmalignant lung diseases. DNA was quantified in 191 subjects: 64 healthy individuals, 58 patients with IPF, 17 patients with nonspecific pulmonary fibrosis (13 idiopathic nonspecific interstitial pneumonia, 4 chronic hypersensitivity pneumonitis), and 52 patients with other diffuse/nonmalignant lung diseases. The median value of free DNA in IPF patients was 61.1 ng/mL (range 7.1-405), which was significantly higher than that of healthy donors (median 6.8, range 2.2-184) (p<0.001) and that of patients with other diffuse/nonmalignant lung diseases (median 28.0, range 4.2-281) (p=0.004). The area under the ROC curve was 0.926 (95% CI 0.879-0.973) when IPF patients were compared with healthy donors, and 0.702 (95% CI 0.609-0.796) when a comparison was made with non-IPF pulmonary diseases. In conclusion, we observed significantly higher levels of free circulating DNA in patients with IPF than in those with other fibrotic or diffuse/nonmalignant lung diseases.  相似文献   
26.

Background

Dmdmdx (mdx) mice are used as a genetic and biochemical model of dystrophin deficiency. The long-term consequences of glucocorticoid (GC) treatment on dystrophin-deficient skeletal and heart muscle are not yet known. Here we used systematic phenotyping to assess the long-term consequences of GC treatment in mdx mice. Our investigation addressed not only the effects of GC on the disease phenotype but also the question of whether GCs can be used as a positive control for preclinical drug evaluations.

Methods and Findings

We performed nine pre-clinical efficacy trials (treated N = 129, untreated N = 106) of different durations in 9-to-50-week-old dystrophic mdx mice over a 3-year time period using standardized methods. In all these trials, we used either 1 mg/kg body weight of prednisone or 5 mg/kg body weight of prednisolone as positive controls to compare the efficacy of various test drugs. Data from untreated controls and GC-treated mice in the various trials have been pooled and analyzed to assess the effects of GCs on dystrophin-deficient skeletal and cardiac muscles of mdx mice. Our results indicate that continuous GC treatment results in early (e.g., at 50 days) improvements in normalized parameters such as grip strength, motor coordination and maximal in vitro force contractions on isolated EDL muscle, but these initial benefits are followed by a progressive loss of muscle strength after 100 days. We also found a significant increase in heart fibrosis that is reflected in a significant deterioration in cardiac systolic function after 100 days of treatment.

Conclusion

Continuous administration of prednisone to mdx mice initially improves skeletal muscle strength, but further therapy result in deterioration of muscle strength and cardiac function associated with enhanced cardiac fibrosis. These results suggest that GCs may not serve as an appropriate positive control for long-term mdx mouse preclinical trials.  相似文献   
27.
Osteoarthritis (OA) and osteochondrosis (OC) are two of the main challenges in orthopedics, whose definitive diagnosis is usually based on radiographic/arthroscopic evidences. Their early diagnosis should allow preventive or timely therapeutic actions, which are generally precluded from the poor relationships occurring between symptomatologic and radiographic evidences. These limitations should be overcome by improving the knowledge on articular tissue metabolism and on molecular factors regulating its normal homeostasis, also identifying novel OA and OC biomarkers suitable for their earlier diagnoses, whenever clinical/pathological inflammatory scenarios between these joint diseases seem somewhat related. To identify proteins involved in their aetiology and progression, we undertook a differential proteomic analysis of equine synovial fluid (SF), which compared the protein pattern of OA or OC patients with that of healthy individuals. Deregulated proteins in OA and OC included components related to inflammatory state, coagulation pathways, oxidative stress and matrix damage, which were suggestive of pathological alterations in articular homeostasis, plasma-SF exchange, joint nutritional status and vessel permeability. Some proteins seemed commonly deregulated in both pathologies indicating that, regardless of the stimulus, common pathways are affected and/or the animal joint uses the same molecular mechanisms to restore its homeostasis. On the other hand, the increased number of deregulated proteins observed in OA with respect to OC, together with their nature, confirmed the high inflammatory character of this disease. Some deregulated proteins in OA found a verification by analyzing the SF of injured arthritic joints following autologous conditioned serum treatment, an emergent therapy that provides positive results for both human and equine OA. Being the horse involved in occupational/sporting activities and considered as an excellent animal model for human joint diseases, our data provide suggestive information for tentative biomedical extrapolations, allowing to overcome the limitations in joint size and workload that are typical of other small animal models.  相似文献   
28.
Physical exercise induces various stress responses and metabolic adaptations that have not yet been completely elucidated. Novel biomarkers are needed in sport veterinary medicine to monitor training levels and to detect subclinical conditions that can develop into exercise-related diseases. In this study, protein modifications in horse plasma induced by prolonged, aerobic physical exercise were investigated by using a proteomic approach based on 2-DE and combined mass spectrometry procedures. Thirty-eight protein spots, associated with expression products of 13 genes, showed significant quantitative changes; spots identified as membrane Cu amine oxidase, α-1 antitrypsin, α-1 antitrypsin-related protein, caeruloplasmin, α-2 macroglobulin and complement factor C4 were augmented in relative abundance after the race, while haptoglobin β chain, apolipoprotein A-I, transthyretin, retinol binding protein 4, fibrinogen γ chain, complement factor B and albumin fragments were reduced. These results indicate that prolonged physical exercise affects plasma proteins involved in pathways related to inflammation, coagulation, immune modulation, oxidant/antioxidant activity and cellular and vascular damage, with consequent effects on whole horse metabolism.  相似文献   
29.
30.
Summary: Diatoms and bacteria have cooccurred in common habitats for hundreds of millions of years, thus fostering specific associations and interactions with global biogeochemical consequences. Diatoms are responsible for one-fifth of the photosynthesis on Earth, while bacteria remineralize a large portion of this fixed carbon in the oceans. Through their coexistence, diatoms and bacteria cycle nutrients between oxidized and reduced states, impacting bioavailability and ultimately feeding higher trophic levels. Here we present an overview of how diatoms and bacteria interact and the implications of these interactions. We emphasize that heterotrophic bacteria in the oceans that are consistently associated with diatoms are confined to two phyla. These consistent bacterial associations result from encounter mechanisms that occur within a microscale environment surrounding a diatom cell. We review signaling mechanisms that occur in this microenvironment to pave the way for specific interactions. Finally, we discuss known interactions between diatoms and bacteria and exciting new directions and research opportunities in this field. Throughout the review, we emphasize new technological advances that will help in the discovery of new interactions. Deciphering the languages of diatoms and bacteria and how they interact will inform our understanding of the role these organisms have in shaping the ocean and how these interactions may change in future oceans.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号