首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   242篇
  免费   18篇
  2023年   1篇
  2022年   4篇
  2021年   6篇
  2020年   6篇
  2019年   6篇
  2018年   9篇
  2017年   9篇
  2016年   8篇
  2015年   17篇
  2014年   17篇
  2013年   15篇
  2012年   30篇
  2011年   14篇
  2010年   7篇
  2009年   12篇
  2008年   17篇
  2007年   12篇
  2006年   16篇
  2005年   14篇
  2004年   7篇
  2003年   13篇
  2002年   8篇
  1999年   3篇
  1998年   1篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1988年   1篇
  1985年   1篇
  1984年   1篇
排序方式: 共有260条查询结果,搜索用时 31 毫秒
171.
Cyanobacteria are prokaryotic photosynthetic microorganisms that pose a serious threat to aquatic environments because they are able to form blooms under eutrophic conditions and produce toxins. Cylindrospermopsis raciborskii is a planktonic heterocystous filamentous cyanobacterium initially assigned to the tropics but currently being found in more temperate regions such as Portugal, the southernmost record for this species in Europe. Cylindrospermopsin originally isolated from C. raciborskii is a cytotoxic alkaloid that affects the liver, kidney, and other organs. It has a great environmental impact associated with cattle mortality and human morbidity. Aiming in monitoring this cyanobacterium and its related toxin, a shallow pond located in the littoral center of Portugal, Vela Lake, used for agriculture and recreational purposes was monitored for a 2-year period. To accomplish this, we used the real-time PCR methodology in field samples to quantify the variation of specific genetic markers with primers previously described characterizing total cyanobacteria (16S rRNA), C. raciborskii (rpoC1), and cylindrospermopsin synthetase gene (pks). The results report the high abundance of both cyanobacteria and C. raciborskii in Vela Lake, with C. raciborskii representing 0.4% to 58% of the total cyanobacteria population. Cylindrospermopsin synthetase gene was detected in one of the samples. We believe that with the approach developed in this study, it will be possible to monitor C. raciborskii population dynamics and seasonal variation, as well as the potential toxin production in other aquatic environments.  相似文献   
172.
During the last few years, the incidence and mortality of human melanoma have rapidly increased. Metastatic spread of malignant melanoma is often associated with cancer progression with poor prognosis and survival. These processes are controlled by dynamic interactions between tumor melanocytes and neighboring stromal cells, whose deregulation leads to the acquisition of cell proliferation capabilities and invasiveness. It is increasingly clear that a key role in carcinogenesis is played by secreted molecules either by tumor and surrounding stromal cells. To address the issue of the proteins secreted during cancer progression, the proteomic profiling of secretomes of cancer cell lines from different melanoma metastases of the same patient (PE-MEL-41, PE-MEL-47, and PE-MEL-43) was performed by applying a shotgun LC-MS/MS-based approach. The results provide a list of candidate proteins associated with the metastatic potential of PE-MEL melanoma cell lines. Among them, several matricellular proteins previously reported as involved in melanoma aggressiveness were identified (i.e., SPARC, osteopontin). In addition, the extracellular matrix protein 1 that stimulates proliferation and angiogenesis of endothelial cells as well as the fibronectin, involved in cell adhesion and motility, were identified. The present work provides the basis to clarify the complex extracellular protein networks implicated in human melanoma cell invasion, migration, and motility.  相似文献   
173.
174.
Aberrant histone deacetylase (HDAC) activity is frequent in human leukemias. However, while classical, NAD(+)-independent HDACs are an established therapeutic target, the relevance of NAD(+)-dependent HDACs (sirtuins) in leukemia treatment remains unclear. Here, we assessed the antileukemic activity of sirtuin inhibitors and of the NAD(+)-lowering drug FK866, alone and in combination with traditional HDAC inhibitors. Primary leukemia cells, leukemia cell lines, healthy leukocytes and hematopoietic progenitors were treated with sirtuin inhibitors (sirtinol, cambinol, EX527) and with FK866, with or without addition of the HDAC inhibitors valproic acid, sodium butyrate, and vorinostat. Cell death was quantified by propidium iodide cell staining and subsequent flow-cytometry. Apoptosis induction was monitored by cell staining with FITC-Annexin-V/propidium iodide or with TMRE followed by flow-cytometric analysis, and by measuring caspase3/7 activity. Intracellular Bax was detected by flow-cytometry and western blotting. Cellular NAD(+) levels were measured by enzymatic cycling assays. Bax was overexpressed by retroviral transduction. Bax and SIRT1 were silenced by RNA-interference. Sirtuin inhibitors and FK866 synergistically enhanced HDAC inhibitor activity in leukemia cells, but not in healthy leukocytes and hematopoietic progenitors. In leukemia cells, HDAC inhibitors were found to induce upregulation of Bax, a pro-apoptotic Bcl2 family-member whose translocation to mitochondria is normally prevented by SIRT1. As a result, leukemia cells become sensitized to sirtuin inhibitor-induced apoptosis. In conclusion, NAD(+)-independent HDACs and sirtuins cooperate in leukemia cells to avoid apoptosis. Combining sirtuin with HDAC inhibitors results in synergistic antileukemic activity that could be therapeutically exploited.  相似文献   
175.
In vivo nucleosomes often occupy well-defined preferred positions on genomic DNA. An important question is to what extent these preferred positions are directly encoded by the DNA sequence itself. We derive here from in vivo positions, accurately mapped by partial micrococcal nuclease digestion, a translational positioning signal that identifies the approximate midpoint of DNA bound by a histone octamer. This midpoint is, on average, highly A/T rich (∼73%) and, in particular, the dinucleotide TpA occurs preferentially at this and other outward-facing minor grooves. We conclude that in this set of sequences the sequence code for DNA bending and nucleosome positioning differs from the other described sets and we suggest that the enrichment of AT-containing dinucleotides at the centre is required for local untwisting. We show that this signature is preferentially associated with nucleosomes flanking promoter regions and suggest that it contributes to the establishment of gene-specific nucleosome arrays.  相似文献   
176.
177.

Background

The development of COPD in subjects with alpha-1 antitrypsin (AAT) deficiency is likely to be influenced by modifier genes. Genome-wide association studies and integrative genomics approaches in COPD have demonstrated significant associations with SNPs in the chromosome 15q region that includes CHRNA3 (cholinergic nicotine receptor alpha3) and IREB2 (iron regulatory binding protein 2). We investigated whether SNPs in the chromosome 15q region would be modifiers for lung function and COPD in AAT deficiency.

Methods

The current analysis included 378 PIZZ subjects in the AAT Genetic Modifiers Study and a replication cohort of 458 subjects from the UK AAT Deficiency National Registry. Nine SNPs in LOC123688, CHRNA3 and IREB2 were selected for genotyping. FEV1 percent of predicted and FEV1/FVC ratio were analyzed as quantitative phenotypes. Family-based association analysis was performed in the AAT Genetic Modifiers Study. In the replication set, general linear models were used for quantitative phenotypes and logistic regression models were used for the presence/absence of emphysema or COPD.

Results

Three SNPs (rs2568494 in IREB2, rs8034191 in LOC123688, and rs1051730 in CHRNA3) were associated with pre-bronchodilator FEV1 percent of predicted in the AAT Genetic Modifiers Study. Two SNPs (rs2568494 and rs1051730) were associated with the post-bronchodilator FEV1 percent of predicted and pre-bronchodilator FEV1/FVC ratio; SNP-by-gender interactions were observed. In the UK National Registry dataset, rs2568494 was significantly associated with emphysema in the male subgroup; significant SNP-by-smoking interactions were observed.

Conclusions

IREB2 and CHRNA3 are potential genetic modifiers of COPD phenotypes in individuals with severe AAT deficiency and may be sex-specific in their impact.  相似文献   
178.

Introduction

Autoantibodies in patients with polymyositis/dermatomyositis (PM/DM) are associated with unique subsets, clinical course and outcome. Anti-MJ antibodies, which recognize the nuclear protein NXP-2/MORC3, are reported in ~25% of juvenile DM. Prevalence and clinical significance of anti-MJ antibodies in adult Italian PM/DM patients were studied.

Methods

Sera from 58 consecutive adult Italian PM/DM patients were analyzed by immunoprecipitation of 35S-labeled K562 cells extract, ELISA (anti-MJ, Jo-1), Western blot and indirect immunofluorescence. Clinical associations were analyzed using information from medical charts.

Results

Anti-MJ antibodies were the most prevalent specificity (17%) found mainly in DM (30%, 8 cases) vs 8% of PM (2 cases, P = 0.02). Comparing 10 anti-MJ (+) vs 48 anti-MJ (-) cases, DM was more common (P = 0.03), and age at onset was younger in anti-MJ (+) (P = 0.0006). In anti-MJ (+), heliotrope rash (P = 0.01) and calcinosis (P = 0.09) were more frequent. None of them had heart or lung involvement, or malignancy. Myopathy in anti-MJ (+) patients responded well to therapy and none of them had elevated CPK at last visit (0% vs 25% in anti-MJ (-)). Only 60% of anti-MJ (+) showed immunofluorescent nuclear dots staining, despite PML localization of NXP-2/MORC3.

Conclusions

Anti-MJ antibodies are the most frequent specificity in our cohort of adult Italian PM/DM. Anti-MJ (+) were associated with young onset DM, calcinosis, no internal organ involvement and good response of myopathy to therapy. Anti-MJ reported in juvenile DM is also found in adult PM/DM, and could be a new useful biomarker.  相似文献   
179.
180.
Protein kinase Cs (PKCs) are critical signaling molecules controlled by complex regulatory pathways. Herein, we describe an important regulatory role for C2 domain phosphorylation. Novel PKCs (nPKCs) contain an N‐terminal C2 domain that cannot bind to calcium. Previously, we described an autophosphorylation site in the Aplysia novel PKC Apl II that increased the binding of the C2 domain to lipids. In this study, we show that the function of this phosphorylation is to inhibit PKC translocation. Indeed, a phosphomimetic serine‐glutamic acid mutation reduced translocation of PKC Apl II while blocking phosphorylation with a serine‐alanine mutation enhanced translocation and led to the persistence of the kinase at the membrane longer after the end of the stimulation. Consistent with a role for autophosphorylation in regulating kinase translocation, inhibiting PKC activity using bisindolymaleimide 1 increased physiological translocation of PKC Apl II, whereas inhibiting phosphatase activity using calyculin A inhibited physiological translocation of PKC Apl II in neurons. Our results suggest a major role for autophosphorylation‐dependent regulation of translocation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号