首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6235篇
  免费   596篇
  国内免费   706篇
  7537篇
  2024年   28篇
  2023年   111篇
  2022年   276篇
  2021年   380篇
  2020年   255篇
  2019年   311篇
  2018年   315篇
  2017年   240篇
  2016年   294篇
  2015年   438篇
  2014年   487篇
  2013年   474篇
  2012年   608篇
  2011年   516篇
  2010年   305篇
  2009年   313篇
  2008年   305篇
  2007年   278篇
  2006年   213篇
  2005年   218篇
  2004年   206篇
  2003年   175篇
  2002年   151篇
  2001年   115篇
  2000年   96篇
  1999年   76篇
  1998年   60篇
  1997年   50篇
  1996年   37篇
  1995年   29篇
  1994年   34篇
  1993年   21篇
  1992年   29篇
  1991年   29篇
  1990年   11篇
  1989年   12篇
  1988年   6篇
  1987年   8篇
  1986年   10篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   1篇
排序方式: 共有7537条查询结果,搜索用时 15 毫秒
121.
冻融作用对土壤温室气体产生与排放的影响   总被引:7,自引:0,他引:7  
土壤冻融交替是中、高纬度和高海拔地区常见的自然现象,土壤在冻融期间会经历一系列物理、化学和生物变化过程。有研究表明,冻融区土壤是温室气体的重要排放源,冻融期土壤温室气体的排放量在全年总排放量中占有重要的份额,尤其是N2O。随着全球气候变暖,部分地区的土壤环境将经受更广泛和频繁的冻融交替作用,这会导致土壤温室气体排放量增加,从而又进一步促进了气候变暖。本文重点概述了冻融作用对土壤温室气体产生与排放的影响及其主要影响机制,并简要提出了目前土壤冻融研究中的一些不足以及今后值得关注和深入研究的科学问题。  相似文献   
122.
123.
124.
A novel thermostable NAD(P)H oxidase from the hyperthermophilic archaeon Thermococcus kodakarensis KOD1 (TkNOX) catalyzes oxidation of NADH and NADPH with oxygen from atmospheric air as an electron acceptor. Although the optimal temperature of TkNOX is >90°C, it also shows activity at 30°C. This enzyme was used for the regeneration of both NADP(+) and NAD(+) in alcohol dehydrogenase (ADH)-catalyzed enantioselective oxidation of racemic 1-phenylethanol. NADP(+) regeneration at 30°C was performed by TkNOX coupled with (R)-specific ADH from Lactobacillus kefir, resulting in successful acquisition of optically pure (S)-1-phenylethanol. The use of TkNOX with moderately thermostable (S)-specific ADH from Rhodococcus erythropolis enabled us to operate the enantioselective bioconversion accompanying NAD(+) regeneration at high temperatures. Optically pure (R)-1-phenylethanol was successfully obtained by this system after a shorter reaction time at 45-60°C than that at 30°C, demonstrating an advantage of the combination of thermostable enzymes. The ability of TkNOX to oxidize both NADH and NADPH with remarkable thermostability renders this enzyme a versatile tool for regeneration of the oxidized nicotinamide cofactors without the need for extra substrates other than dissolved oxygen from air.  相似文献   
125.
126.
Recently, it was proposed that alternative splicing may act as a mechanism for opening accelerated paths of evolution, by reducing negative selection pressure, but there has been little evidence so far whether this could produce adaptive benefit. Here we employ metrics of very different types of selection pressures (e.g. against amino acid mutations (Ka/Ks); against mutations at synonymous sites (Ks); and for protein reading-frame preservation) to address this question via genome-wide analyses of human, chimpanzee, mouse, and rat. These data show that alternative splicing relaxes Ka/Ks selection pressure up to seven-fold, but intriguingly that this effect is accompanied by a strong increase in selection pressure against synonymous mutations, which propagates into the adjacent intron, and correlates strongly with the alternative splicing level observed for each exon. These effects are highly local to the alternatively spliced exon. Comparisons of these four genomes consistently show an increase in the density of amino acid mutations (Ka) in alternatively spliced exons, and a decrease in the density of synonymous mutations (Ks). This selection pressure against synonymous mutations in alternatively spliced exons was accompanied in all four genomes by a striking increase in selection pressure for protein reading-frame preservation, and both increased markedly with increasing evolutionary age. Restricting our analysis to a subset of exons with strong evidence for biologically functional alternative splicing produced identical results. Thus alternative splicing apparently can create evolutionary “hotspots” within a protein sequence, and these events have evidently been selected for during mammalian evolution.  相似文献   
127.
大量研究表明,TGF-β作为一种具有多种功能的生长因子,是全身瘢痕愈合的重要刺激因素.在人眼部参与多种眼部纤维化的过程。尤其在促进青光眼滤过术后结膜瘢痕形成中起重要作用。Smad蛋白家族在TGF-β超家族的信号转导中具有重要的作用。Smad7主要通过抑制TGF书受体介导的Smad2、Smad3磷酸化来拮抗TGF-β的信号转导,被认为是TGF-β超家族信号转导自我调节的一种负反馈信号。  相似文献   
128.
Iron bioavailability is crucial for mitochondrial metabolism and biosynthesis. Dysregulation of cellular iron homeostasis affects multiple aspects of mitochondrial physiology and cellular processes. However, the intracellular iron trafficking pathway in Candida albicans remains unclear. In this study, we characterized the Mrs4–Ccc1–Smf3 pathway, and demonstrated its important role in maintaining cellular iron levels. Double deletion of vacuolar iron exporter SMF3 and mitochondrial iron transporter MRS4 further elevated cellular iron levels in comparison with the single MRS4 deletion. However, deletion of vacuolar iron importer CCC1 in the mrs4?/? mutant restored cellular iron homeostasis to normal wild-type levels, and also normalized most of the defective phenotypes in response to various environmental stresses. Our results also suggested that both Mrs4 and Ccc1 contributed to the maintenance of mitochondrial function. The mrs4?/? and mrs4?/?smf3?/? mutants exhibited an obvious decrease in aconitase activities and mitochondrial membrane potential, whereas deletion of CCC1 in the mrs4?/? mutant effectively rescued these defects. Furthermore, we also found that the Mrs4–Ccc1–Smf3 pathway was indispensable for cell-wall stability, antifungal drug tolerance, filamentous growth and virulence, supporting the novel viewpoint that mitochondria might be the promising target for better antifungal therapies. Interestingly, the addition of exogenous iron failed to rescue the defects on non-fermentable carbon sources or hyphae-inducing medium, indicating that the defects in mitochondrial respiration and filamentous development might result from the disturbance of cellular iron homeostasis rather than environmental iron deprivation. Taken together, our results propose the Mrs4–Ccc1–Smf3 pathway as a potentially attractive target for antifungal drug development.  相似文献   
129.
We previously identified a matrix protein, MSI7, from pearl oyster Pinctada fucata. According to the structural analysis, the DGD site in the N-terminal of MSI7 is crucial for its role in the shell formation. In this study, we expressed a series of recombinant MSI7 proteins, including the wild-type and several mutants directed at the DGD site, using an Escherichia coli expression system to reveal the structure-function relationship of MSI7. Furthermore, in vitro crystallization, crystallization speed assay, and circular dichroism spectrometry were carried out. Results indicated that wild-type MSI7 could induce the nucleation of aragonite and inhibit the crystallization of calcite. However, none of the mutants could induce the nucleation of aragonite, but all of them could inhibit the crystallization of calcite to some extent. And all the proteins accelerated the crystallization process. Taken together, the results indicated that MSI7 could contribute to aragonite crystallization by inducing the nucleation of aragonite and inhibiting the crystallization of calcite, which agrees with our prediction about its role in the nacreous layer formation of the shell. The DGD site was critical for the induction of the nucleation of aragonite.  相似文献   
130.
HDL carries biologically active lipids such as sphingosine-1-phosphate (S1P) and stimulates a variety of cell signaling pathways in diverse cell types, which may contribute to its ability to protect against atherosclerosis. HDL and sphingosine-1-phosphate receptor agonists, FTY720 and SEW2871 triggered macrophage migration. HDL-, but not FTY720-stimulated migration was inhibited by an antibody against the HDL receptor, SR-BI, and an inhibitor of SR-BI mediated lipid transfer. HDL and FTY720-stimulated migration was also inhibited in macrophages lacking either SR-BI or PDZK1, an adaptor protein that binds to SR-BI''s C-terminal cytoplasmic tail. Migration in response to HDL and S1P receptor agonists was inhibited by treatment of macrophages with sphingosine-1-phosphate receptor type 1 (S1PR1) antagonists and by pertussis toxin. S1PR1 activates signaling pathways including PI3K-Akt, PKC, p38 MAPK, ERK1/2 and Rho kinases. Using selective inhibitors or macrophages from gene targeted mice, we demonstrated the involvement of each of these pathways in HDL-dependent macrophage migration. These data suggest that HDL stimulates the migration of macrophages in a manner that requires the activities of the HDL receptor SR-BI as well as S1PR1 activity.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号