首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   905篇
  免费   65篇
  2021年   14篇
  2020年   7篇
  2019年   8篇
  2018年   8篇
  2017年   14篇
  2016年   19篇
  2015年   31篇
  2014年   39篇
  2013年   47篇
  2012年   57篇
  2011年   44篇
  2010年   35篇
  2009年   25篇
  2008年   49篇
  2007年   29篇
  2006年   36篇
  2005年   28篇
  2004年   32篇
  2003年   33篇
  2002年   32篇
  2001年   23篇
  2000年   21篇
  1999年   15篇
  1998年   13篇
  1997年   10篇
  1996年   8篇
  1995年   6篇
  1994年   5篇
  1993年   9篇
  1992年   17篇
  1991年   21篇
  1990年   19篇
  1989年   27篇
  1988年   13篇
  1987年   14篇
  1986年   13篇
  1985年   15篇
  1984年   14篇
  1983年   9篇
  1982年   6篇
  1981年   6篇
  1979年   11篇
  1978年   9篇
  1977年   6篇
  1973年   6篇
  1972年   5篇
  1971年   4篇
  1970年   5篇
  1969年   9篇
  1960年   4篇
排序方式: 共有970条查询结果,搜索用时 578 毫秒
141.
D-beta-Hydroxybutyrate dehydrogenase is a lipid-requiring enzyme which is localized on the inner face of the mitochondrial inner membrane. The apodehydrogenase, i.e. the purified enzyme devoid of lipid, has been purified from beef heart mitochondria and as such is inactive. It can be reactivated by insertion into phospholipid vesicles containing lecithin. Proteolytic digestion with different proteases has been carried out to obtain insight into the orientation of the enzyme in the membrane and to assess the extent of immersion of the protein into the phospholipid bilayer. Digestion of the apodehydrogenase with either trypsin, chymotrypsin, Staphylococcus aureus protease, thermolysin, carboxypeptidases A and Y, or Pronase (from Streptomyces griseus) leads to loss of activity, as assayed with phospholipid. Limited digestion with carboxypeptidase results in complete inactivation. Of the proteases tested, only Pronase and chymotrypsin cleave and inactivate the enzyme inserted into phospholipid vesicles (enzyme-phospholipid complex). For the enzyme-phospholipid complex, the loss of activity with Pronase digestion follows a single exponential decay to less than 10% of the initial activity. With chymotrypsin digestion, the staining intensity of the original approximately 31,500-dalton polypeptide decreases more rapidly than the loss of enzymic activity. The enzyme-phospholipid complex, after limited cleavage with chymotrypsin, retains enzymic activity and resonance energy transfer from protein to bound NADH and an approximately 26,000-dalton polypeptide is observed. Phospholipid alters the cleavage pattern with both chymotrypsin and Pronase, and the rate of inactivation of the enzyme-phospholipid complex is slowed in the presence of NAD(H). Moreover, the rate of inactivation of the apodehydrogenase with chymotrypsin is diminished approximately 3-fold in the presence of NAD+. Digestion of submitochondrial vesicles with either trypsin, chymotrypsin, or Pronase rapidly inactivates D-beta-hydroxybutyrate dehydrogenase; the addition of NAD+ or NADH, together with dithiothreitol and increased salt (to 50 mM), decreases the rate of inactivation, and with trypsin, virtually eliminates inactivation.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   
142.
Acrosin from human spermatozoa was required for studies of immunological interference with fertilization, but not detailed purification scheme was available for the human enzyme. Since human semen samples cannot be obtained cheaply or in large numbers and contain relatively small amounts of acrosin, development of purification procedures was carried out with bovine semen. Bovine acrosin had not previously been fully purified, and over 1 mg of pure acrosin was obtained from 100 mL of bovine semen, by a process of saline and Triton X-100 washes of the spermatozoa, 1 mM HCl extraction, gel filtration, and ion-exchange and affinity chromatography. The bovine acrosin had a molecular weight (MW) of 39 000 and a specific activity of 93 U/mg, measured with 0.5 mM benzoyl arginine ethyl ester. The same extraction procedure could be followed for human acrosin, but better yields were obtained in the purification if the ion-exchange step was omitted. The human acrosin had a MW of 49 000, and traces of a 38 000 MW component were sometimes observed. From 14 human semen samples, containing initially 7-10 U of acrosin activity, about 2.5 U (approximately 20 micrograms of protein) could be obtained in a pure state.  相似文献   
143.
144.
145.
Human DNA polymerases (pols) η and ι are Y-family DNA polymerase paralogs that facilitate translesion synthesis past damaged DNA. Both polη and polι can be monoubiquitinated in vivo. Polη has been shown to be ubiquitinated at one primary site. When this site is unavailable, three nearby lysines may become ubiquitinated. In contrast, mass spectrometry analysis of monoubiquitinated polι revealed that it is ubiquitinated at over 27 unique sites. Many of these sites are localized in different functional domains of the protein, including the catalytic polymerase domain, the proliferating cell nuclear antigen-interacting region, the Rev1-interacting region, and its ubiquitin binding motifs UBM1 and UBM2. Polι monoubiquitination remains unchanged after cells are exposed to DNA-damaging agents such as UV light (generating UV photoproducts), ethyl methanesulfonate (generating alkylation damage), mitomycin C (generating interstrand cross-links), or potassium bromate (generating direct oxidative DNA damage). However, when exposed to naphthoquinones, such as menadione and plumbagin, which cause indirect oxidative damage through mitochondrial dysfunction, polι becomes transiently polyubiquitinated via Lys11- and Lys48-linked chains of ubiquitin and subsequently targeted for degradation. Polyubiquitination does not occur as a direct result of the perturbation of the redox cycle as no polyubiquitination was observed after treatment with rotenone or antimycin A, which both inhibit mitochondrial electron transport. Interestingly, polyubiquitination was observed after the inhibition of the lysine acetyltransferase KATB3/p300. We hypothesize that the formation of polyubiquitination chains attached to polι occurs via the interplay between lysine acetylation and ubiquitination of ubiquitin itself at Lys11 and Lys48 rather than oxidative damage per se.  相似文献   
146.
Transporters play a vital role in both the resistance mechanisms of existing drugs and effective targeting of their replacements. Melarsoprol and diamidine compounds similar to pentamidine and furamidine are primarily taken up by trypanosomes of the genus Trypanosoma brucei through the P2 aminopurine transporter. In standardized competition experiments with [3H]adenosine, P2 transporter inhibition constants (Ki) have been determined for a diverse dataset of adenosine analogs, diamidines, Food and Drug Administration-approved compounds and analogs thereof, and custom-designed trypanocidal compounds. Computational biology has been employed to investigate compound structure diversity in relation to P2 transporter interaction. These explorations have led to models for inhibition predictions of known and novel compounds to obtain information about the molecular basis for P2 transporter inhibition. A common pharmacophore for P2 transporter inhibition has been identified along with other key structural characteristics. Our model provides insight into P2 transporter interactions with known compounds and contributes to strategies for the design of novel antiparasitic compounds. This approach offers a quantitative and predictive tool for molecular recognition by specific transporters without the need for structural or even primary sequence information of the transport protein.  相似文献   
147.
Mutants of Escherichia coli containing a defective sn-glycerol 3-phosphate acyltransferase are conditionally defective in the synthesis of acylglycerol phosphate (acylglycerol-P). Incubation of a deep rough derivative of one of these plsB strains with 1-[3H]oleoylglycerol-32P resulted in the binding of up to 70 nmol of oleoylglycerol-P per 100 nmol of cellular phospholipid. The binding was dependent on time, oleoylglycerol-P concentration, and the quantity of cells employed. The rate and extent of oleoylglycerol-P binding was affected by the deep rough mutation. The altered phospholipid composition due to oleoylglycerol-P binding was without consequence on cell growth and viability, but caused the appearance of intracellular multilamellar structures. Use of the double-labeled oleoylglycerol P demonstrated that the entire molecule was bound to the cell. Intact [3H]-oleoylglycerol-32P was converted to phosphatidylethanolamine and phosphotidyl-glycerol at a rate about 40% of that of de novo phospholipid synthesis. These data demonstrate the transmembrane movement of oleoylglycerol-P to the inner surface of the cytoplasmic membrane and suggest that it may become possible to supplement plsB strains of E. coli with acylglycerol-P's.  相似文献   
148.
149.
Platelet-activating factor (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine; PAF) is a phospholipid with many physiological actions. It is synthesized by endothelial cells and a variety of others in response to stimulation with receptor-mediated agonists. In endothelial cells it remains associated with the surface of the cell and serves as a signal for adhesive interactions with leukocytes. Thus, its synthesis must be precisely regulated. In previous work we have shown that PAF synthesis is regulated at the initiating step, a phospholipase A2. Here we demonstrate that the subsequent step of PAF synthesis, the acetyl-CoA:lyso-PAF acetyltransferase, is rapidly activated when cells are exposed to thrombin or other agonists. We found that the activity increased from basal values (5 nmol/mg/min) to approximately 3-fold higher within 1 min following the addition of agonists. The enzyme activity returned to basal levels within 10 min. The pattern of activation and inactivation suggested covalent modification of the enzyme. This was supported in experiments in which we showed that homogenates had stable enhanced activity and that there was no evidence for an activator or inhibitor. Pretreatment of the cells with vanadate, an inhibitor of protein phosphatases, markedly prolonged the activation state. In subsequent studies we pretreated intact cells with vanadate to block inactivation of the enzyme and then measured the accumulation of PAF in response to thrombin. We found that it was markedly augmented and prolonged. From this we conclude that the synthesis of PAF in intact cells is regulated by the activity of the acetyltransferase. We characterized requirements for activation of acetyltransferase and found that it was not dependent on the influx of intracellular calcium but that calcium entry did influence the length of time for which the enzyme was activated. The acetyltransferase in endothelial cells was shown to be a specific enzyme that did not catalyze the transfer of long chain acyl groups from acyl-CoA to lysophospholipids and demonstrated modest specificity for the acceptor lysophospholipids. These results suggest that activation of the acetyltransferase is a crucial determinant of the amount of PAF synthesized in activated endothelial cells.  相似文献   
150.
Platelet-activating factor (PAF) is a phospholipid (1-O-alkyl-2-acetyl-sn-glycero-3-phosphocholine) with diverse physiological effects. It has been implicated as a mediator of inflammation, allergy, shock, and thrombosis. Plasma contains an enzyme, PAF acetylhydrolase, that catalyzes the degradation of PAF, and the level of this enzyme may regulate the concentration of PAF in the blood and extracellular spaces under some conditions. Thus, the cellular source(s) of this enzyme and the factors that regulate its synthesis and secretion are issues that may have important physiological and pathological implications. We found that cultures of Hep G2, a human hepatocarcinoma line, secreted PAF acetylhydrolase activity. Optimal secretion occurred in medium that contained serum, and the newly secreted PAF acetylhydrolase was associated with high density and low density lipoproteins (LDL and HDL, respectively), just as the enzyme is in plasma. In the absence of serum. PAF acetylhydrolase was secreted with a particle that had a density similar to HDL. Apolipoproteins B and E were found in the same fractions. We tested the effects of a variety of hormones on the secretion of PAF acetylhydrolase and found that secretion was inhibited by 17 alpha-ethynylestradiol with a maximal effect at 30 microM. This may account for the observation of others that estrogens reduce the activity of PAF acetylhydrolase in the plasma. The PAF acetylhydrolase secreted by Hep G2 cells appeared to be identical to the enzyme in human plasma based on substrate specificity, association with LDL and HDL, response to inhibitors, and reactivity with antibodies against the plasma PAF acetylhydrolase. In conclusion, we have demonstrated that hepatocytes in culture secrete a PAF acetylhydrolase that is apparently identical to the plasma form. The secretion is constitutive but may also be regulated in response to hormonal stimulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号