首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6876篇
  免费   762篇
  2021年   83篇
  2020年   58篇
  2019年   54篇
  2018年   90篇
  2017年   81篇
  2016年   133篇
  2015年   224篇
  2014年   225篇
  2013年   303篇
  2012年   380篇
  2011年   339篇
  2010年   234篇
  2009年   234篇
  2008年   292篇
  2007年   259篇
  2006年   245篇
  2005年   242篇
  2004年   239篇
  2003年   226篇
  2002年   240篇
  2001年   187篇
  2000年   218篇
  1999年   165篇
  1998年   93篇
  1997年   93篇
  1996年   77篇
  1995年   77篇
  1994年   57篇
  1993年   70篇
  1992年   142篇
  1991年   141篇
  1990年   148篇
  1989年   134篇
  1988年   109篇
  1987年   130篇
  1986年   114篇
  1985年   107篇
  1984年   105篇
  1983年   77篇
  1982年   58篇
  1981年   70篇
  1980年   48篇
  1979年   75篇
  1978年   45篇
  1977年   66篇
  1976年   46篇
  1975年   54篇
  1974年   54篇
  1973年   66篇
  1971年   48篇
排序方式: 共有7638条查询结果,搜索用时 78 毫秒
961.
Centrosomes nucleate and organize interphase microtubules and are instrumental in mitotic bipolar spindle assembly, ensuring orderly cell cycle progression with accurate chromosome segregation. We report that the multifunctional structural protein 4.1R localizes at centrosomes to distal/subdistal regions of mature centrioles in a cell cycle-dependent pattern. Significantly, 4.1R-specific depletion mediated by RNA interference perturbs subdistal appendage proteins ninein and outer dense fiber 2/cenexin at mature centrosomes and concomitantly reduces interphase microtubule anchoring and organization. 4.1R depletion causes G(1) accumulation in p53-proficient cells, similar to depletion of many other proteins that compromise centrosome integrity. In p53-deficient cells, 4.1R depletion delays S phase, but aberrant ninein distribution is not dependent on the S-phase delay. In 4.1R-depleted mitotic cells, efficient centrosome separation is reduced, resulting in monopolar spindle formation. Multipolar spindles and bipolar spindles with misaligned chromatin are also induced by 4.1R depletion. Notably, all types of defective spindles have mislocalized NuMA (nuclear mitotic apparatus protein), a 4.1R binding partner essential for spindle pole focusing. These disruptions contribute to lagging chromosomes and aberrant microtubule bridges during anaphase/telophase. Our data provide functional evidence that 4.1R makes crucial contributions to the structural integrity of centrosomes and mitotic spindles which normally enable mitosis and anaphase to proceed with the coordinated precision required to avoid pathological events.  相似文献   
962.
Understanding the survival, multiplication, and transmission to seeds of plant pathogenic bacteria is central to study their pathogenesis. We hypothesized that the type III secretion system (T3SS), encoded by hrp genes, could have a role in host colonization by plant pathogenic bacteria. The seed-borne pathogen Xanthomonas fuscans subsp. fuscans causes common bacterial blight of bean (Phaseolus vulgaris). Directed mutagenesis in strain CFBP4834-R of X. fuscans subsp. fuscans and bacterial population density monitoring on bean leaves showed that strains with mutations in the hrp regulatory genes, hrpG and hrpX, were impaired in their phyllospheric growth, as in the null interaction with Escherichia coli C600 and bean. In the compatible interaction, CFBP4834-R reached high phyllospheric population densities and was transmitted to seeds at high frequencies with high densities. Strains with mutations in structural hrp genes maintained the same constant epiphytic population densities (1 x 10(5) CFU g(-1) of fresh weight) as in the incompatible interaction with Xanthomonas campestris pv. campestris ATCC 33913 and the bean. Low frequencies of transmission to seeds and low bacterial concentrations were recorded for CFBP4834-R hrp mutants and for ATCC 33913, whereas E. coli C600 was not transmitted. Moreover, unlike the wild-type strain, strains with mutations in hrp genes were not transmitted to seeds by vascular pathway. Transmission to seeds by floral structures remained possible for both. This study revealed the involvement of the X. fuscans subsp. fuscans T3SS in phyllospheric multiplication and systemic colonization of bean, leading to transmission to seeds. Our findings suggest a major contribution of hrp regulatory genes in host colonization processes.  相似文献   
963.
964.
In 2001, the German Federal Ministry of Education and Research (BMBF) initiated the National Genome Research Network (NGFN; www.ngfn.de) as a nation-wide multidisciplinary networking platform aiming at the analysis of common human diseases and aging. Within the NGFN the Human Brain Proteome Project (HBPP; www.smp-proteomics.de) focuses on the analysis of the human brain in health and disease. The concept is based on two consecutive steps: (i) Elaborating and establishing the necessary technology platforms. (ii) Application of the established technologies for research in Alzheimer's disease and Parkinson's disease. In the first funding period, HBPP1, running from 2001 to 2004, necessary technologies were established and optimized. In HBPP2, which started 2004 and will end in May 2008, the developed technologies are used for large-scale experiments, offering new links for disease related research and therapies. The following overview describes structure, aims and outcome of this unique German Brain Proteome Project.  相似文献   
965.
966.
The "Coordination Action" ProDaC (Proteomics Data Collection) - funded by the EU within the 6th framework programme - was created to support the dissemination, utilization and publication of proteomics data. Within this international consortium, standards are developed and maintained to support extensive data collection by the proteomics community. An important part of ProDaC are workshops organized on a regular basis (two per year) to allow discussions and communication between the ProDaC partners and to report on the progress of the project. The kick-off meeting took place in October 2006 in Long Beach, CA, USA. The 1st ProDaC workshop was held in Lyon, France (April 2007) and the 2nd in Seoul, Korea in October 2007. ProDaC organized the 3rd ProDaC workshop at the Beatriz Hotel, Toledo, on 22nd April, 2008, directly before the HUPO - PSI spring meeting (Human Proteome Organisation - Proteomics Standards Initiative). The work package coordinators presented talks about the progress achieved during the past six months. Additionally four external speakers presented their work on data conversion and data repositories. The concluding discussion session was chaired by the Journal's representative.  相似文献   
967.
Twelve polymorphic dinucelotide microsatellites in the freshwater eel Anguilla anguilla L. were isolated and characterized. Genetic diversity was assessed in eels from Lake Constance, Germany. Allele numbers ranged from five to 26 per locus with observed heterozygosities between 0.125 and 0.875. A portion of locus AangCT77 aligns with a transcribed region of the zebrafish gene crystallin beta B2. Cross-species amplification of most markers was possible for nine other Anguilla eel species. The newly developed primer pairs will facilitate population and conservation genetic studies in order to refine the understanding of the subtle population genetic structure typical of eels, and to identify interspecies admixture due to global trade.  相似文献   
968.

Background

Vascular endothelial growth factor receptor-2 (VEGFR-2) signaling is an obligate requirement for normal development and pathological angiogenesis such as cancer and age-related macular degeneration. Although autophosphorylation of tyrosine 1173 (Y1173) of VEGFR-2 is considered a focal point for its angiogenic signal relay, however, the mechanism of phosphorylation of Y1173, signaling proteins that are recruited to this residue and their role in angiogenesis is not fully understood.

Methodology/Principal Findings

In this study we demonstrate that c-Src kinase directly through its Src homology 2 (SH2) domain and indirectly via c-Cbl binds to phospho-Y1057 of VEGFR-2. Activation of c-Src kinase by a positive feedback mechanism phosphorylates VEGFR-2 at multi-docking site, Y1173. c-Src also catalyzes tyrosine phosphorylation of IQGAP1 and acts as an adaptor to bridge IQGAP1 to VEGFR-2. In turn, IQGAP1 activates b-Raf and mediates proliferation of endothelial cells. Silencing expression of IQGAP1 and b-Raf revealed that their activity is essential for VEGF to stimulate angiogenesis in an in vivo angiogenesis model of chicken chorioallantoic membrane (CAM).

Conclusions/Significance

Angiogenesis contributes to the pathology of numerous human diseases ranging from cancer to age-related macular degeneration. Determining molecular mechanism of tyrosine phosphorylation of VEGFR-2 and identification of molecules that are relaying its angiogenic signaling may identify novel targets for therapeutic intervention against angiogenesis-associated diseases. Our study shows that recruitment and activation of c-Src by VEGFR-2 plays a pivotal role in relaying angiogenic signaling of VEGFR-2; it phosphorylates VEGFR-2 at Y1173, facilitates association and activation of IQGAP1 and other signaling proteins to VEGFR-2. IQGAP1-dependent signaling, in part, is critically required for endothelial cell proliferation, a key step in angiogenesis. Thus, Y1057 of VEGFR-2 serves to regulate VEGFR-2 function in a combinatorial manner by supporting both diversity of recruitment of angiogenic signaling proteins to VEGFR-2, and its ability to promote angiogenesis.  相似文献   
969.
Inoue T  Meyer T 《PloS one》2008,3(8):e3068
Phosphatidylinositol 3-OH kinase (PI3K) has been widely studied as a principal regulator of cell polarization, migration, and chemotaxis. Surprisingly, recent studies showed that mammalian neutrophils and Dictyostelium discoideum cells can polarize and migrate in the absence of PI3K activity. Here we directly probe the roles of PI3K and its downstream effector, Rac, in HL-60 neutrophils by using a chemical biology approach whereby the endogenously present enzymes are synthetically activated in less than one minute. We show that uniform activation of endogenous PI3K is sufficient to polarize previously unpolarized neutrophils and trigger effective cell migration. After a delay following symmetrical phosphatidylinositol (3,4,5)-triphosphate (PIP(3)) production, a polarized distribution of PIP(3) was induced by positive feedback requiring actin polymerization. Pharmacological studies argue that this process does not require receptor-coupled trimeric G proteins. Contrary to the current working model, rapid activation of endogenous Rac proteins triggered effective actin polymerization but failed to feed back to PI3K to generate PIP(3) or induce cell polarization. Thus, the increase in PIP(3) concentration at the leading edge is generated by positive feedback with an AND gate logic with a PI3K-Rac-actin polymerization pathway as a first input and a PI3K initiated non-Rac pathway as a second input. This AND-gate control for cell polarization can explain how Rac can be employed for both PI3K-dependent and -independent signaling pathways coexisting in the same cell.  相似文献   
970.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号