首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   719篇
  免费   107篇
  国内免费   1篇
  2021年   8篇
  2020年   6篇
  2019年   8篇
  2018年   13篇
  2017年   10篇
  2016年   12篇
  2015年   22篇
  2014年   31篇
  2013年   32篇
  2012年   39篇
  2011年   35篇
  2010年   34篇
  2009年   29篇
  2008年   29篇
  2007年   28篇
  2006年   25篇
  2005年   30篇
  2004年   17篇
  2003年   19篇
  2002年   20篇
  2001年   22篇
  2000年   22篇
  1999年   18篇
  1998年   11篇
  1997年   12篇
  1996年   7篇
  1994年   6篇
  1993年   7篇
  1992年   22篇
  1991年   14篇
  1990年   21篇
  1989年   10篇
  1988年   9篇
  1987年   14篇
  1986年   13篇
  1985年   11篇
  1984年   11篇
  1983年   9篇
  1982年   8篇
  1981年   8篇
  1980年   10篇
  1979年   6篇
  1978年   11篇
  1974年   11篇
  1973年   8篇
  1972年   9篇
  1970年   6篇
  1969年   6篇
  1968年   8篇
  1966年   5篇
排序方式: 共有827条查询结果,搜索用时 15 毫秒
91.
Francisella tularensis is a gram-negative intracellular bacterium that has been classified as a Category A biothreat because of its ability to induce deadly pneumonic tularemia when inhaled. In the present study, an experimental model of F. tularensis LVS intranasal infection was used to study the immune cells involved in cytokine secretion in the lungs after infection. Dramatic increases in the numbers of cells secreting IFN-gamma were observed 72 h after intranasal infection of BALB/c and C57BL/6 mice with sublethal (1000 CFU) or lethal (10,000 CFU) doses of F. tularensis LVS and the cells primarily responsible for this IFN-gamma expression were identified as CD11b+ DX5+ NK cells. The findings were further confirmed in C57BL/6 mice showing that cells responsible for IFN-gamma secretion in the lungs were CD11b+ DX5+ NK1.1+. NK cell depletion studies showed a decrease in the percentage of IFN-gamma secreting cells, due not only to a diminished proportion of IFN-gamma secreting NK cells, but also to a reduced percentage of T cells secreting IFN-gamma. The results indicate that IFN-gamma is secreted in response to respiratory infection with F. tularensis LVS, and that NK cells are the early responders responsible for IFN-gamma secretion.  相似文献   
92.
A unique opportunity for the study of the role of serial passage and cross-species transmission was offered by a series of experiments carried out at the Tulane National Primate Research Center in 1990. To develop an animal model for leprosy, three black mangabeys (BkMs) (Lophocebus aterrimus) were inoculated with lepromatous tissue that had been serially passaged in four sooty mangabeys (SMs) (Cercocebus atys). All three BkMs became infected with simian immunodeficiency virus from SMs (SIVsm) by day 30 postinoculation (p.i.) with lepromatous tissue. One (BkMG140) died 2 years p.i. from causes unrelated to SIV, one (BkMG139) survived for 10 years, whereas the third (BkMG138) was euthanized with AIDS after 5 years. Histopathology revealed a high number of giant cells in tissues from BkMG138, but no SIV-related lesions were found in the remaining two BkMs. Four-color immunofluorescence revealed high levels of SIVsm associated with both giant cells and T lymphocytes in BkMG138 and no detectable SIV in the remaining two. Serum viral load (VL) showed a significant increase (>1 log) during the late stage of the disease in BkMG138, as opposed to a continuous decline in VL in the remaining two BkMs. With the progression to AIDS, neopterin levels increased in BkMG138. This study took on new significance when phylogenetic analysis unexpectedly showed that all four serially inoculated SMs were infected with different SIVsm lineages prior to the beginning of the experiment. Furthermore, the strain infecting the BkMs originated from the last SM in the series. Therefore, the virus infecting BkMs has not been serially passaged. In conclusion, we present the first compelling evidence that direct cross-species transmission of SIV may induce AIDS in heterologous African nonhuman primate (NHP) species. The results showed that cross-species-transmitted SIVsm was well controlled in two of three BkMs for 2 and 10 years, respectively. Finally, this case of AIDS in an African monkey suggests that the dogma of SIV nonpathogenicity in African NHP hosts should be reconsidered.  相似文献   
93.
94.
95.
CloQ is an aromatic prenyltransferase from the clorobiocin biosynthetic pathway of Streptomyces roseochromogenes var. oscitans. It is involved in the synthesis of the prenylated hydroxybenzoate moiety of the antibiotic, specifically catalyzing the attachment of a dimethylallyl moiety to 4-hydroxyphenylpyruvate. Herein, we report the crystal structure of CloQ and use it as a framework for interpreting biochemical data from both wild-type and variant proteins. CloQ belongs to the aromatic prenyltransferase family, which is characterized by an unusual core fold comprising five consecutive ααββ elements that form a central 10-stranded anti-parallel β-barrel. The latter delineates a solvent-accessible cavity where substrates bind and catalysis takes place. This cavity has well-defined polar and nonpolar regions, which have distinct roles in substrate binding and facilitate a Friedel-Crafts-type mechanism. We propose that the juxtaposition of five positively charged residues in the polar region circumvents the necessity for a Mg2+, which, by contrast, is a strict requirement for the majority of prenyltransferases characterized to date. Our structure of CloQ complexed with 4-hydroxyphenylpyruvate reveals the formation of a covalent link between the substrate and Cys215 to yield a thiohemiketal species. Through site-directed mutagenesis, we show that this link is not essential for enzyme activity in vitro. Furthermore, we demonstrate that CloQ will accept alternative substrates and, therefore, has the capacity to generate a range of prenylated compounds. Since prenylation is thought to enhance the bioactivity of many natural products, CloQ offers considerable promise as a biocatalyst for the chemoenzymatic synthesis of novel compounds with therapeutic potential.  相似文献   
96.
Statins inhibit cholesterol synthesis and produce pleiotropic, cholesterol-independent effects including endothelial NO synthase (eNOS) stimulation and increased expression. However, a functional polymorphism in the promoter of the eNOS gene (T-786C) reduces its activity and could modulate the response to statins. Here, we examined whether this polymorphism modulates the effects of atorvastatin on the plasma levels of markers of NO formation and oxidative stress. We genotyped 200 healthy subjects for this polymorphism, and 15 subjects with the TT genotype and 15 with the CC genotype were selected to receive placebo or atorvastatin 10 mg/day po for 14 days. To assess NO bioavailability, the plasma concentrations of nitrate, nitrite, and cGMP and the whole blood nitrite concentrations were determined after placebo or atorvastatin using an ozone-based chemiluminescence assay and an enzyme immunoassay. Thiobarbituric acid-reactive species (TBA-RS) were measured in the plasma to assess oxidative stress. Atorvastatin decreased cholesterol concentrations independent of genotype. Whereas atorvastatin produced no significant changes in plasma nitrite, nitrate, or cGMP concentrations in both genotype groups, atorvastatin increased whole blood nitrite concentrations and decreased plasma TBA-RS concentrations in the CC (but not in the TT) genotype group. These findings suggest that the T-786C polymorphism modulates the effects of atorvastatin on NO bioavailability and oxidative stress.  相似文献   
97.
Singlet oxygen ((1)O(2)), an electronically excited form of molecular oxygen, is a mediator of biological effects of ultraviolet A radiation, stimulating signaling cascades in human cells. We demonstrate here that (1)O(2) generated by photosensitization or by thermodecomposition of 3,3'-(1,4-naphthylidene)dipropionate-1,4-endoperoxide inactivates isolated protein tyrosine phosphatases (PTPases). PTPase activities of PTP1B or CD45 were abolished by low concentrations of (1)O(2), but were largely restored by post-treatment with dithiothreitol. Electrospray ionization mass spectrometry analysis of tryptic digests of PTP1B exposed to (1)O(2) revealed oxidation of active-site Cys215 as the only cysteine residue oxidized. In summary, (1)O(2) may activate signaling cascades by interfering with phosphotyrosine dephosphorylation.  相似文献   
98.
99.
The expansion of a polymorphic CAG repeat in the HD gene encoding huntingtin has been identified as the major cause of Huntington’s disease (HD) and determines 42–73% of the variance in the age-at-onset of the disease. Polymorphisms in huntingtin interacting or associated genes are thought to modify the course of the disease. To identify genetic modifiers influencing the age at disease onset, we searched for polymorphic markers in the GRIK2, TBP, BDNF, HIP1 and ZDHHC17 genes and analysed seven of them by association studies in 980 independent European HD patients. Screening for unknown sequence variations we found besides several silent variations three polymorphisms in the ZDHHC17 gene. These and polymorphisms in the GRIK2, TBP and BDNF genes were analysed with respect to their association with the HD age-at-onset. Although some of the factors have been defined as genetic modifier factors in previous studies, none of the genes encoding GRIK2, TBP, BDNF and ZDHHC17 could be identified as a genetic modifier for HD.Electronic Supplementary Material Supplementary material is available to authorised users in the online version of this article at .  相似文献   
100.
The myofilament protein troponin I (TnI) has a key isoform-dependent role in the development of contractile failure during acidosis and ischemia. Here we show that cardiac performance in vitro and in vivo is enhanced when a single histidine residue present in the fetal cardiac TnI isoform is substituted into the adult cardiac TnI isoform at codon 164. The most marked effects are observed under the acute challenges of acidosis, hypoxia, ischemia and ischemia-reperfusion, in chronic heart failure in transgenic mice and in myocytes from failing human hearts. In the isolated heart, histidine-modified TnI improves systolic and diastolic function and mitigates reperfusion-associated ventricular arrhythmias. Cardiac performance is markedly enhanced in transgenic hearts during reperfusion despite a high-energy phosphate content similar to that in nontransgenic hearts, providing evidence for greater energetic economy. This pH-sensitive 'histidine button' engineered in TnI produces a titratable molecular switch that 'senses' changes in the intracellular milieu of the cardiac myocyte and responds by preferentially augmenting acute and long-term function under pathophysiological conditions. Myofilament-based inotropy may represent a therapeutic avenue to improve myocardial performance in the ischemic and failing heart.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号