首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   91篇
  2023年   5篇
  2022年   6篇
  2021年   16篇
  2020年   10篇
  2019年   16篇
  2018年   20篇
  2017年   24篇
  2016年   32篇
  2015年   68篇
  2014年   59篇
  2013年   76篇
  2012年   83篇
  2011年   76篇
  2010年   42篇
  2009年   39篇
  2008年   72篇
  2007年   54篇
  2006年   50篇
  2005年   50篇
  2004年   44篇
  2003年   52篇
  2002年   47篇
  2001年   11篇
  2000年   17篇
  1999年   18篇
  1998年   10篇
  1997年   13篇
  1996年   7篇
  1995年   5篇
  1994年   5篇
  1993年   9篇
  1992年   4篇
  1991年   5篇
  1990年   3篇
  1989年   3篇
  1988年   1篇
  1986年   2篇
  1985年   3篇
  1984年   1篇
  1983年   2篇
  1980年   5篇
  1979年   3篇
  1978年   3篇
  1977年   3篇
  1976年   3篇
  1974年   6篇
  1973年   1篇
  1925年   1篇
排序方式: 共有1085条查询结果,搜索用时 31 毫秒
71.
The gene encoding isocitrate dehydrogenase (IDH) of Methylococcus capsulatus (McIDH) was cloned and overexpressed in Escherichia coli. The purified enzyme was NAD+-dependent with a thermal optimum for activity at 55–60°C and an apparent midpoint melting temperature (T m) of 70°C. Analytical ultracentrifugation (AUC) revealed a homotetrameric state, and McIDH thus represents the first homotetrameric NAD+-dependent IDH that has been characterized. Based on a structural alignment of McIDH and homotetrameric homoisocitrate dehydrogenase (HDH) from Thermus thermophilus (TtHDH), we identified the clasp-like domain of McIDH as a likely site for tetramerization. McIDH showed moreover, higher sequence identity (48%) to TtHDH than to previously characterized IDHs. Putative NAD+-IDHs with high sequence identity (48–57%) to McIDH were however identified in a variety of bacteria showing that NAD+-dependent IDHs are indeed widespread within the domain, Bacteria. Phylogenetic analysis including these new sequences revealed a close relationship with eukaryal allosterically regulated NAD+-IDH and the subfamily III of IDH was redefined to include bacterial NAD+- and NADP+-dependent IDHs. This apparent relationship suggests that the mitochondrial genes encoding NAD+-IDH are derived from the McIDH-like IDHs.  相似文献   
72.
Translation requires the specific attachment of amino acids to tRNAs by aminoacyl-tRNA synthetases (aaRSs) and the subsequent delivery of aminoacyl-tRNAs to the ribosome by elongation factor 1 alpha (EF-1α). Interactions between EF-1α and various aaRSs have been described in eukaryotes, but the role of these complexes remains unclear. To investigate possible interactions between EF-1α and other cellular components, a yeast two-hybrid screen was performed for the archaeon Methanothermobacter thermautotrophicus. EF-1α was found to form a stable complex with leucyl-tRNA synthetase (LeuRS; KD = 0.7 μM). Complex formation had little effect on EF-1α activity, but increased the kcat for Leu-tRNALeu synthesis ~8-fold. In addition, EF-1α co-purified with the archaeal multi-synthetase complex (MSC) comprised of LeuRS, LysRS and ProRS, suggesting the existence of a larger aaRS:EF-1α complex in archaea. These interactions between EF-1α and the archaeal MSC contribute to translational fidelity both by enhancing the aminoacylation efficiencies of the three aaRSs in the complex and by coupling two stages of translation: aminoacylation of cognate tRNAs and their subsequent channeling to the ribosome.  相似文献   
73.
Exogenous glucagon-like peptide 2 (GLP-2) prevents intestinal atrophy and increases nutrient absorption in term newborn pigs receiving total parenteral nutrition (TPN). We tested the hypothesis that the immature intestine of fetuses and preterm neonates has a diminished nutrient absorption response to exogenous GLP-2. This was accomplished using catheterized fetal pigs infused for 6 days (87-91% of gestation) with GLP-2 (25 nmol.kg(-1).day(-1) iv; n = 7) or saline (n = 7), and cesarean-delivered preterm pigs (92% of gestation) that received TPN with GLP-2 (25 nmol.kg(-1).day(-1) iv; n = 8) or saline (n = 7) for 6 days after birth. Responses to GLP-2 were assessed by measuring intestinal dimensions, absorption of nutrients (glucose, leucine, lysine, proline) by intact tissues and brush border membrane vesicles, and abundance of sodium-glucose cotransporter mRNA. Infusion of GLP-2 increased circulating GLP-2 levels in fetuses, but did not increase intestinal mass or absorption of nutrients by intact tissues and brush border membrane vesicles, except for lysine. Administration of exogenous GLP-2 to preterm TPN-fed pigs similarly did not increase rates of nutrient absorption, yet nutrient absorption capacities of the entire small intestine tended to increase (+10-20%, P < 0.10) compared with TPN alone due to increased intestinal mass (+30%, P < 0.05). GLP-2 infusion did not increase sodium-glucose cotransporter-1 mRNA abundance in fetuses or postnatal preterm pigs. Hence, the efficacy of exogenous GLP-2 to improve nutrient absorption by the intestine of fetal and preterm pigs is limited compared with term pigs and more mature animals and humans.  相似文献   
74.
Oxygen binding to hemoglobin (Hb) depends on allosteric effectors (CO(2), lactate and protons) that may increase drastically in concentration during exercise. The effectors share common binding sites on the Hb molecules, predicting mutual interaction in their effects on Hb (de)oxygenation. We analysed the effects of lactate and CO(2), separately and in combination, on O(2) binding of purified human Hb at 37 degrees C and physiological pH and chloride values. We demonstrate pH-dependent, inhibitory interactions between lactate binding and CO(2) binding (carbamate formation); at pH 7.4, physiological CO(2) tension ( approximately 43 mm Hg) reduced lactate binding more markedly ( approximately 75%), than lactate (50 mM) inhibited carbamate formation ( approximately 25%). In contrast to previous studies on blood and Hb solutions, we moreover find that added lactate neither 'reverses' oxylabile carbamate formation (resulting in lower carbamate levels in deoxyHb than in oxyHb) nor exerts greater allosteric effects on Hb-O(2) affinity than equal increases in chloride ion concentrations.  相似文献   
75.
The present study characterizes the anticoagulant resistance mechanism in a Danish bromadiolone-resistant strain of Norway rats (Rattus norvegicus), with a Y139C VKORC1 mutation. We compared liver expression of the VKORC1 gene, which encodes a protein of the vitamin K 2,3-epoxide reductase complex, the NQO1 gene, which encodes a NAD(P)H quinone dehydrogenase and the Calumenin gene between bromadiolone-resistant and anticoagulant-susceptible rats upon saline and bromadiolone administration. Additionally, we established the effect of bromadiolone on the gene expression in the resistant and susceptible phenotype. Bromadiolone had no effect on VKORC1 and NQO1 expression in resistant rats, but induced significantly Calumenin expression in the susceptible rats. Calumenin expression was similar between the resistant and the susceptible rats upon saline administration but twofold lower in resistant rats after bromadiolone treatment. These results indicate that Danish bromadiolone resistance does not involve an overexpression of calumenin. Independent of the treatment, we observed a low VKORC1 expression in resistant rats, which in conjugation with the Y139C polymorphism most likely explains the low VKOR activity and the enhanced need for vitamin K observed in Danish resistant rats. Furthermore the bromadiolone resistance was found to be associated with a low expression of the NQO1 gene.  相似文献   
76.
Planarians are highly regenerative organisms with the ability to remake all their cell types, including the germ cells. The germ cells have been suggested to arise from totipotent neoblasts through epigenetic mechanisms. Nanos is a zinc-finger protein with a widely conserved role in the maintenance of germ cell identity. In this work, we describe the expression of a planarian nanos-like gene Smednos in two kinds of precursor cells namely, primordial germ cells and eye precursor cells, during both development and regeneration of the planarian Schmidtea mediterranea. In sexual planarians, Smednos is expressed in presumptive male primordial germ cells of embryos from stage 8 of embryogenesis and throughout development of the male gonads and in the female primordial germ cells of the ovary. Thus, upon hatching, juvenile planarians do possess primordial germ cells. In the asexual strain, Smednos is expressed in presumptive male and female primordial germ cells. During regeneration, Smednos expression is maintained in the primordial germ cells, and new clusters of Smednos-positive cells appear in the regenerated tissue. Remarkably, during the final stages of development (stage 8 of embryogenesis) and during regeneration of the planarian eye, Smednos is expressed in cells surrounding the differentiating eye cells, possibly corresponding to eye precursor cells. Our results suggest that similar genetic mechanisms might be used to control the differentiation of precursor cells during development and regeneration in planarians. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
77.
78.
79.
3-methylglutaconic aciduria (3-MGA-uria) is a nonspecific finding associated with mitochondrial dysfunction, including defects of oxidative phosphorylation. 3-MGA-uria is classified into five groups, of which one, type IV, is genetically heterogeneous. Here we report five children with a form of type IV 3-MGA-uria characterized by cataracts, severe psychomotor regression during febrile episodes, epilepsy, neutropenia with frequent infections, and death in early childhood. Four of the individuals were of Greenlandic descent, and one was North American, of Northern European and Asian descent. Through a combination of homozygosity mapping in the Greenlandic individuals and exome sequencing in the North American, we identified biallelic variants in the caseinolytic peptidase B homolog (CLPB). The causative variants included one missense variant, c.803C>T (p.Thr268Met), and two nonsense variants, c.961A>T (p.Lys321) and c.1249C>T (p.Arg417). The level of CLPB protein was markedly decreased in fibroblasts and liver of affected individuals. CLPB is proposed to function as a mitochondrial chaperone involved in disaggregation of misfolded proteins, resulting from stress such as heat denaturation.  相似文献   
80.
Genome-wide mapping approaches in diverse populations are powerful tools to unravel the genetic architecture of complex traits. The main goals of our study were to investigate the potential and limits to unravel the genetic architecture and to identify the factors determining the accuracy of prediction of the genotypic variation of Fusarium head blight (FHB) resistance in wheat (Triticum aestivum L.) based on data collected with a diverse panel of 372 European varieties. The wheat lines were phenotyped in multi-location field trials for FHB resistance and genotyped with 782 simple sequence repeat (SSR) markers, and 9k and 90k single-nucleotide polymorphism (SNP) arrays. We applied genome-wide association mapping in combination with fivefold cross-validations and observed surprisingly high accuracies of prediction for marker-assisted selection based on the detected quantitative trait loci (QTLs). Using a random sample of markers not selected for marker–trait associations revealed only a slight decrease in prediction accuracy compared with marker-based selection exploiting the QTL information. The same picture was confirmed in a simulation study, suggesting that relatedness is a main driver of the accuracy of prediction in marker-assisted selection of FHB resistance. When the accuracy of prediction of three genomic selection models was contrasted for the three marker data sets, no significant differences in accuracies among marker platforms and genomic selection models were observed. Marker density impacted the accuracy of prediction only marginally. Consequently, genomic selection of FHB resistance can be implemented most cost-efficiently based on low- to medium-density SNP arrays.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号