首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   526篇
  免费   111篇
  2021年   9篇
  2017年   6篇
  2016年   7篇
  2015年   20篇
  2014年   17篇
  2013年   16篇
  2012年   22篇
  2011年   25篇
  2010年   13篇
  2009年   21篇
  2008年   30篇
  2007年   22篇
  2006年   20篇
  2005年   16篇
  2004年   16篇
  2003年   18篇
  2002年   15篇
  2001年   15篇
  2000年   12篇
  1999年   13篇
  1997年   5篇
  1996年   8篇
  1995年   6篇
  1993年   5篇
  1992年   13篇
  1991年   13篇
  1990年   11篇
  1989年   8篇
  1988年   10篇
  1987年   18篇
  1986年   15篇
  1985年   16篇
  1984年   11篇
  1983年   13篇
  1982年   10篇
  1981年   5篇
  1980年   8篇
  1979年   9篇
  1978年   5篇
  1977年   9篇
  1976年   5篇
  1975年   5篇
  1974年   8篇
  1973年   10篇
  1972年   12篇
  1971年   11篇
  1969年   8篇
  1968年   10篇
  1966年   4篇
  1965年   5篇
排序方式: 共有637条查询结果,搜索用时 15 毫秒
171.
172.
As the use of adenoviral vectors in gene therapy protocols increases, there is a corresponding need for rapid, accurate, and reproducible titer methods. Multiple methods currently exist for determining titers of recombinant adenoviral vector, including optical absorbence, electron microscopy, fluorescent focus assay, and the “gold standard” plaque assay. This paper introduces a novel flow cytometric method for direct titer determination that relies on the expression of the green fluorescent protein (GFP), a tracking marker incorporated into several adenoviral vectors. This approach was compared to the plaque assay using 10−4-to 10−6-fold dilutions of a cesium-chloride-purified, GFP expressing adenovirus (AdEasy+GFP+GAL). The two approaches yielded similar titers: 3.25±1.85×109 PFU/mL versus 3.46±0.76×109 green fluorescent units/(gfu/mL). The flow cytometric method is complete within 24 h in contrast to the 7×10 days required by the plaque assay. These results indicate that the GFU/mL is an alternative functional titer method for fluorescent-tagged adenoviral vectors.  相似文献   
173.
A mutation in the mch gene, encoding the enzyme 5,10-methenyl tetrahydromethanopterin (H(4)MPT) cyclohydrolase, was constructed in vitro and recombined onto the chromosome of the methanogenic archaeon Methanosarcina barkeri. The resulting mutant does not grow in media using H(2)/CO(2), methanol, or acetate as carbon and energy sources, but does grow in media with methanol/H(2)/CO(2), demonstrating its ability to utilize H(2) as a source of electrons for reduction of methyl groups. Cell suspension experiments showed that methanogenesis from methanol or from H(2)/CO(2) is blocked in the mutant, explaining the lack of growth on these substrates. The corresponding mutation in Methanosarcina acetivorans C2A, which cannot grow on H(2)/CO(2), could not be made in wild-type strains, but could be made in strains carrying a second copy of mch, suggesting that M. acetivorans is incapable of methyl group reduction using H(2). M. acetivorans mch mutants could also be constructed in strains carrying the M. barkeri ech hydrogenase operon, suggesting that the block in the methyl reduction pathway is at the level of H(2) oxidation. Interestingly, the ech-dependent methyl reduction pathway of M. acetivorans involves an electron transport chain distinct from that used by M. barkeri, because M. barkeri ech mutants remain capable of H(2)-dependent methyl reduction.  相似文献   
174.
Two leucine aminopeptidase M inhibitors, cyanostatin A and B, were isolated from cyanobacterial water blooms at Loch Rescobie in Scotland, and specifically from a Microcystis species. Both inhibitors were lipopeptides containing 3-amino-2-hydroxydecanoic acid and weak inhibitors of protein phosphatase (PP2A). Both strongly inhibited the activity of leucine aminopeptidase M with IC50 values of 40 and 12 ng/ml, respectively.  相似文献   
175.
Organs from neonatal mice dying from IFN-gamma-dependent inflammatory disease initiated by loss of the gene encoding the suppressor of cytokine signaling-1 (SOCS-1) had a normal capacity to produce G-CSF in vitro but a reduced capacity to produce GM-CSF, most evident with the lung, and some reduction in the production of M-CSF by muscle tissue. In contrast, organs from mice lacking the genes for both SOCS-1 and IFN-gamma had a normal capacity to produce CSFs. Organs from young adult mice dying with polymyositis and myocarditis that lacked SOCS-1 but were heterozygous for IFN-gamma had a normal capacity to produce GM-CSF and M-CSF, but muscle tissue produced significantly increased amounts of G-CSF and IL-5 with IL-5 production also being elevated for the salivary gland, thymus, and heart. Loss of the IFN-gamma gene alone had no impact on organ production of these cytokines in vitro. In none of the inflammatory disease models was IL-3 production detected. The SOCS-1 protein appears to have no direct influence on the cellular production of these cytokines and the abnormalities observed either depend on the coaction of IFN-gamma, or more likely, are linked with the invasion and destruction of tissue by T lymphocytes, macrophages, eosinophils, and neutrophils. The ability of local organs to produce these proinflammatory cytokines could contribute to the development and progression of these inflammatory lesions.  相似文献   
176.
177.
The ptxD gene from Pseudomonas stutzeri WM88 encoding the novel phosphorus oxidizing enzyme NAD:phosphite oxidoreductase (trivial name phosphite dehydrogenase, PtxD) was cloned into an expression vector and overproduced in Escherichia coli. The heterologously produced enzyme is indistinguishable from the native enzyme based on mass spectrometry, amino-terminal sequencing, and specific activity analyses. Recombinant PtxD was purified to homogeneity via a two-step affinity protocol and characterized. The enzyme stoichiometrically produces NADH and phosphate from NAD and phosphite. The reverse reaction was not observed. Gel filtration analysis of the purified protein is consistent with PtxD acting as a homodimer. PtxD has a high affinity for its substrates with Km values of 53.1 +/- 6.7 microm and 54.6 +/- 6.7 microm, for phosphite and NAD, respectively. Vmax and kcat were determined to be 12.2 +/- 0.3 micromol x min(-1) x mg(-1) and 440 min(-1). NADP can substitute poorly for NAD; however, none of the numerous compounds examined were able to substitute for phosphite. Initial rate studies in the absence or presence of products and in the presence of the dead end inhibitor sulfite are most consistent with a sequential ordered mechanism for the PtxD reaction, with NAD binding first and NADH being released last. Amino acid sequence comparisons place PtxD as a new member of the d-2-hydroxyacid NAD-dependent dehydrogenases, the only one to have an inorganic substrate. To our knowledge, this is the first detailed biochemical study on an enzyme capable of direct oxidation of a reduced phosphorus compound.  相似文献   
178.
A novel immunoassay was developed for specific detection of cyanobacterial cyclic peptide hepatotoxins which inhibit protein phosphatases. Immunoassay methods currently used for microcystin and nodularin detection and analysis do not provide information on the toxicity of microcystin and/or nodularin variants. Furthermore, protein phosphatase inhibition-based assays for these toxins are not specific and respond to other environmental protein phosphatase inhibitors, such as okadaic acid, calyculin A, and tautomycin. We addressed the problem of specificity in the analysis of protein phosphatase inhibitors by combining immunoassay-based detection of the toxins with a colorimetric protein phosphatase inhibition system in a single assay, designated the colorimetric immuno-protein phosphatase inhibition assay (CIPPIA). Polyclonal antibodies against microcystin-LR were used in conjunction with protein phosphatase inhibition, which enabled seven purified microcystin variants (microcystin-LR, -D-Asp3-RR, -LA, -LF, -LY, -LW, and -YR) and nodularin to be distinguished from okadaic acid, calyculin A, and tautomycin. A range of microcystin- and nodularin-containing laboratory strains and environmental samples of cyanobacteria were assayed by CIPPIA, and the results showed good correlation (R2 = 0.94, P < 0.00001) with the results of high-performance liquid chromatography with diode array detection for toxin analysis. The CIPPIA procedure combines ease of use and detection of low concentrations with toxicity assessment and specificity for analysis of microcystins and nodularins.  相似文献   
179.
The binding of granulocyte colony-stimulating factor (G-CSF) to murine bone marrow cells was investigated using a radioiodinated derivative of high specific radioactivity which retained full biological activity. The binding was time- and temperature-dependent, saturable and highly specific. The apparent dissociation constant for the reaction was 60-80 pM at 37 degrees C and 90-110 pM at 4 degrees C, similar to that found for the binding of G-CSF to murine leukemic cells (WEHI-3B D+) and significantly higher than the concentration of G-CSF required to stimulate colony formation in vitro. Autoradiographic analysis confirmed the specificity of binding since granulocytic cells were labeled but lymphocytes, erythroid cells and eosinophils were not. Blast cells and monocytic cells were partially labeled, the latter at low levels. In the neutrophilic granulocyte series, grain counts increased with cell maturity, polymorphs being the most heavily labeled but all cells showed considerable heterogeneity in the degree of labeling. Combination of Scatchard analysis of binding with autoradiographic data indicated that mature granulocytes from murine bone marrow exhibited 50-500 G-CSF receptors per cell.  相似文献   
180.
A panel of 55 alloreactive murine T-lymphocyte clones was screened for the production of granulocyte-macrophage colony stimulating factor (GM-CSF), multilineage CSF (multi-CSF), human-active eosinophil CSF (human-active EO-CSF), and interleukin 2 (IL-2) in response to stimulation with the lectin concanavalin A. Many clones were also characterized for cytolytic specificity and expression of the T-cell antigen receptor-associated surface markers Lyt-2 and L3T4, which reflect their specificity for Class I (H-2K, H-2D) or Class II (H-2l, Mls) histocompatibility antigens, respectively. Eighty percent of the clones secreted detectable quantities of at least one of the four factors measured. Of the factor-producing clones, all appeared to secrete GM-CSF and half also secreted multi-CSF. A subpopulation of multi-CSF producers also released human-active EO-CSF. More than half of the factor-producing clones secreted detectable IL-2; whereas the IL-2-producing clones included some that did not secrete multi-CSF, IL-2 production was always associated with concomitant synthesis of GM-CSF. Comparison of the range and quantities of factors secreted by Lyt-2+ and L3T4+ clones indicated that more L3T4+ clones produced measurable titers of the four factors; on average, this group also secreted 10- to 100-fold higher titers of both the hemopoietic regulators and IL-2 than Lyt-2+ clones. Cells of the L3T4+ phenotype would therefore be expected to account for the majority of CSF and IL-2 secretion by polyclonal populations of activated T lymphocytes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号