首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   630篇
  免费   106篇
  国内免费   3篇
  2021年   10篇
  2017年   8篇
  2016年   9篇
  2015年   21篇
  2014年   22篇
  2013年   23篇
  2012年   28篇
  2011年   30篇
  2010年   26篇
  2009年   32篇
  2008年   38篇
  2007年   33篇
  2006年   21篇
  2005年   20篇
  2004年   19篇
  2003年   22篇
  2002年   16篇
  2001年   20篇
  2000年   12篇
  1999年   14篇
  1998年   9篇
  1997年   8篇
  1996年   8篇
  1995年   7篇
  1993年   6篇
  1992年   13篇
  1991年   13篇
  1990年   11篇
  1989年   8篇
  1988年   11篇
  1987年   17篇
  1986年   14篇
  1985年   14篇
  1984年   11篇
  1983年   12篇
  1982年   8篇
  1980年   10篇
  1979年   11篇
  1977年   9篇
  1976年   5篇
  1975年   5篇
  1974年   8篇
  1973年   10篇
  1972年   12篇
  1971年   11篇
  1969年   8篇
  1968年   11篇
  1967年   4篇
  1966年   4篇
  1965年   5篇
排序方式: 共有739条查询结果,搜索用时 609 毫秒
51.
A series of novel nonpeptide inhibitors of the pp60(c-Src) (Src) SH2 domain is described that exploit multifunctional group replacement of the phenylphosphate moiety of phosphotyrosine (pTyr). Relative to an x-ray structure of citrate complexed to the pTyr binding site of the Src SH2 domain, these nonpeptide ligands illustrate the systematic replacement of the phosphate group by multiple nonhydrolyzable, mono- or dianionic functionalities. Specifically, several phenylalanine (Phe) analogs incorporating key 4' and 3' substituents were synthesized and incorporated into a bicyclic benzamide template previously reported (W. C. Shakespeare et al., Proceedings of the National Academy of Science USA, 2000, Vol. 97, pp. 9373-9378). These pTyr mimetics included 4',3'-diphosphono-Phe (Dpp), 4',3'-dicarboxymethyloxy-Phe (Dcp), and 4'-phosphono-3'-carboxymethyloxy-Phe (Cpp). Noteworthy were nonpeptide inhibitors 8-11 that were 5- to 10-fold more potent than the cognate tetrapeptide ligand Ac-pTyr-Glu-Glu-Ile-NH(2) in binding to the Src SH2 domain.  相似文献   
52.
The 2-aminoethylphosphonate transaminase (AEPT; the phnW gene product) of the Salmonella enterica serovar Typhimurium 2-aminoethylphosphonate (AEP) degradation pathway catalyzes the reversible reaction of AEP and pyruvate to form phosphonoacetaldehyde (P-Ald) and L-alanine (L-Ala). Here, we describe the purification and characterization of recombinant AEPT. pH rate profiles (log V(m) and log V(m)/K(m) versus pH) revealed a pH optimum of 8.5. At pH 8.5, K(eq) is equal to 0.5 and the k(cat) values of the forward and reverse reactions are 7 and 9 s(-1), respectively. The K(m) for AEP is 1.11 +/- 0.03 mM; for pyruvate it is 0.15 +/- 0.02 mM, for P-Ald it is 0.09 +/- 0.01 mM, and for L-Ala it is 1.4 +/- 0.03 mM. Substrate specificity tests revealed a high degree of discrimination, indicating a singular physiological role for the transaminase in AEP degradation. The 40-kDa subunit of the homodimeric enzyme is homologous to other members of the pyridoxalphosphate-dependent amino acid transaminase superfamily. Catalytic residues conserved within well-characterized members are also conserved within the seven known AEPT sequences. Site-directed mutagenesis demonstrated the importance of three selected residues (Asp168, Lys194, and Arg340) in AEPT catalysis.  相似文献   
53.
A highly efficient method of transposon mutagenesis was developed for genetic analysis of Xanthobacter autotrophicus Py2. The method makes use of a transposon delivery vector that encodes a hyperactive Tn 5 transposase that is 1,000-fold more active than the wild-type transposase. In this construct, the transposase is expressed from the promoter of the tetA gene of plasmid RP4, which is functional in a wide variety of organisms. The transposon itself contains a kanamycin resistance gene as a selectable marker and the origin of replication from plasmid R6K to facilitate subsequent cloning of the resulting insertion site. To test the effectiveness of this method, mutants unable to produce the characteristic yellow pigment (zeaxanthin dirhamnoside) of X. autotrophicus Py2 were isolated and analyzed. Transposon insertions were obtained at high frequency: approximately 1 x 10(-3) per recipient cell. Among these, pigment mutants were observed at a frequency of approximately 10(-3). Such mutants were found to have transposon insertions in genes homologous to known carotenoid biosynthetic genes previously characterized in other pigmented bacteria. Mutants were also isolated in Pseudomonas stutzeri and in an Alcaligenes faecalis, demonstrating the effectiveness of the method in diverse Proteobacteria. Preliminary results from other laboratories have confirmed the effectiveness of this method in additional phylogenetically diverse species.  相似文献   
54.
It has been suggested that CD4+ T cell proliferative responses to HIV p24 Ag may be important in the control of HIV infection. However, these responses are minimal or absent in many HIV-infected individuals. Furthermore, while in vitro and in vivo responses to non-HIV recall Ags improve upon administration of highly active antiretroviral therapy, there does not appear to be a commensurate enhancement of HIV-specific immune responses. It is possible that CD4+ p24-specific T cells are deleted early in the course of infection. However, it is also possible that a discrete unresponsiveness, or anergy, contributes to the lack of proliferation to p24. To evaluate the possible contribution of unresponsiveness to the lack of CD4+ T cell proliferation to p24 in HIV-infected individuals, we attempted to overcome unresponsiveness. CD40 ligand trimer (CD40LT) and IL-12 significantly increased PBMC and CD4+ T cell proliferative responses to p24 Ag in HIV-infected, but not uninfected, individuals. No increase in proliferative response to CMV Ag was observed. CD40LT exerted its effect through B7-CD28-dependent and IL-12- and IL-15-independent mechanisms. Finally, the increase in proliferation with CD40LT and IL-12 was associated with an augmented production of IFN-gamma in most, but not all, individuals. These data suggest the possible contribution of HIV-specific unresponsiveness to the lack of CD4+ T cell proliferation to p24 Ag in HIV-infected individuals and that clonal deletion alone does not explain this phenomenon. They also indicate the potential for CD40LT and IL-12 as immune-based therapies for HIV infection.  相似文献   
55.
Low-cost, straightforward methods for the extraction of microcystins and nodularins from cyanobacterial cells were developed using a microwave oven and boiling waterbath. The use of organic solvents, such as methanol, which can interfere with sensitive analytical procedures, e.g. immunoassays, can thus be avoided. Analysis by protein phosphatase inhibition assay and high performance liquid chromatography indicated that purified microcystin-LR was unaffected by the microwave oven and boiling waterbath treatments. Four microcystins of differing hydrophobicities were successfully extracted from Microcystis PCC 7813 by both treatments at yields equivalent to those obtained by longer protocols using methanol. Assessment of the microwave oven and boiling waterbath extraction methods with laboratory strains and environmental samples of cyanobacteria showed good correlation with results from lyophilisation and methanol extraction, when extracts were analysed by high performance liquid chromatography with diode array detection (R(2)>/=0.92). The microwave and boiling waterbath extraction methods also sterilised the environmental bloom samples, as evidenced by the abolition of heterotrophic bacterial growth.  相似文献   
56.
57.
Acharya  S; Rayborn  ME; Hollyfield  JG 《Glycobiology》1998,8(10):997-1006
Rod and cone photoreceptors project from the outer retinal surface into a carbohydrate-rich interphotoreceptor matrix (IPM). Unique IPM glycoconjugates are distributed around rods and cones. Wheat germ agglutinin (WGA) strongly decorates the rod matrix domains and weakly decorates the cone matrix domains. This study characterizes the major WGA-binding glycoprotein in the human IPM, which we refer to as SPACR (sialoprotein associated with cones and rods). SPACR, which has a molecular weight of 147 kDa, was isolated and purified from the IPM by lectin affinity chromatography. A polyclonal antibody to SPACR was prepared that colocalizes in tissue preparations with WGA-binding domains in the IPM. Sequential digestion of SPACR with N- and O- glycosidases results in a systematic increase in electrophorectic mobility, indicating the presence of both N- and O-linked glycoconjugates. Complete deglycosylation results in a reduction in the relative molecular mass of SPACR by about 30%. Analysis of lectin binding allowed us to identify some of the structural characteristics of SPACR glycoconjugates. Treatment with neuraminidase exposes Galbeta1- 3GalNAc disaccharide as indicated by positive peanut agglutinin (PNA) staining, accompanied by the loss of WGA staining. Maackia amurensis agglutinins (MAA-1 and MAA-2), specific for sialic acid in alpha2-3 linkage to Gal, bind SPACR, while Sambucus nigra agglutinin (SNA), specific for alpha2-6 linked sialic acid, does not, indicating that the dominant glycoconjugate determinant on SPACR is the O-linked carbohydrate, NeuAcalpha2-3Galbeta1-3GalNAc. The abundance of sialic acid in SPACR suggests that this glycoprotein may contribute substantially to the polyanionic nature of the IPM. The carbohydrate chains present on SPACR could also provide sites for extensive crosslinking and participate in the formation of the ordered IPM lattice that surrounds the elongate photoreceptors projecting from the outer retinal surface.   相似文献   
58.
Impaired immune responses in the elderly lead to reduced vaccine efficacy and increased susceptibility to viral infections. Although several groups have documented age-dependent defects in adaptive immune priming, the deficits that occur prior to antigen encounter remain largely unexplored. Herein, we identify novel mechanisms for compromised adaptive immunity that occurs with aging in the context of infection with West Nile virus (WNV), an encephalitic flavivirus that preferentially causes disease in the elderly. An impaired IgM and IgG response and enhanced vulnerability to WNV infection during aging was linked to delayed germinal center formation in the draining lymph node (DLN). Adoptive transfer studies and two-photon intravital microscopy revealed a decreased trafficking capacity of donor naïve CD4+ T cells from old mice, which manifested as impaired T cell diapedesis at high endothelial venules and reduced cell motility within DLN prior to antigen encounter. Furthermore, leukocyte accumulation in the DLN within the first few days of WNV infection or antigen-adjuvant administration was diminished more generally in old mice and associated with a second aging-related defect in local cytokine and chemokine production. Thus, age-dependent cell-intrinsic and environmental defects in the DLN result in delayed immune cell recruitment and antigen recognition. These deficits compromise priming of early adaptive immune responses and likely contribute to the susceptibility of old animals to acute WNV infection.  相似文献   
59.
Down syndrome (DS), with trisomy of chromosome 21 (HSA21), is the commonest human aneuploidy. Pre-leukemic myeloproliferative changes in DS foetal livers precede the acquisition of GATA1 mutations, transient myeloproliferative disorder (DS-TMD) and acute megakaryocytic leukemia (DS-AMKL). Trisomy of the Erg gene is required for myeloproliferation in the Ts(1716)65Dn DS mouse model. We demonstrate here that genetic changes specifically attributable to trisomy of Erg lead to lineage priming of primitive and early multipotential progenitor cells in Ts(1716)65Dn mice, excess megakaryocyte-erythroid progenitors, and malignant myeloproliferation. Gene expression changes dependent on trisomy of Erg in Ts(1716)65Dn multilineage progenitor cells were correlated with those associated with trisomy of HSA21 in human DS hematopoietic stem and primitive progenitor cells. These data suggest a role for ERG as a regulator of hematopoietic lineage potential, and that trisomy of ERG in the context of DS foetal liver hemopoiesis drives the pre-leukemic changes that predispose to subsequent DS-TMD and DS-AMKL.  相似文献   
60.
ESCRT (endosomal sorting complex required for transport) proteins were originally identified for their role in delivering endocytosed proteins to the intraluminal vesicles of late-endosomal structures termed multivesicular bodies. Multivesicular bodies then fuse with lysosomes, leading to degradation of the internalized proteins. Four ESCRT complexes interact to concentrate cargo on the endosomal membrane, induce membrane curvature to form an intraluminal bud and finally pinch off the bud through a membrane-scission event to produce the intraluminal vesicle. Recent work suggests that ESCRT proteins are also required downstream of these events to enable fusion of multivesicular bodies with lysosomes. Autophagy is a related pathway required for the degradation of organelles, long-lived proteins and protein aggregates which also converges on lysosomes. The proteins or organelle to be degraded are encapsulated by an autophagosome that fuses either directly with a lysosome or with an endosome to form an amphisome, which then fuses with a lysosome. A common machinery is beginning to emerge that regulates fusion events in the multivesicular body and autophagy pathways, and we focus in the present paper on the role of ESCRT proteins. These fusion events have been implicated in diseases including frontotemporal dementia, Alzheimer's disease, lysosomal storage disorders, myopathies and bacterial pathogen invasion, and therefore further examination of the mechanisms involved may lead to new insight into disease pathogenesis and treatments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号