排序方式: 共有12条查询结果,搜索用时 0 毫秒
11.
Discrete Determinants in ArfGAP2/3 Conferring Golgi Localization and Regulation by the COPI Coat 总被引:1,自引:0,他引:1 下载免费PDF全文
Lena Kliouchnikov Joëlle Bigay Bruno Mesmin Anna Parnis Moran Rawet Noga Goldfeder Bruno Antonny Dan Cassel 《Molecular biology of the cell》2009,20(3):859-869
From yeast to mammals, two types of GTPase-activating proteins, ArfGAP1 and ArfGAP2/3, control guanosine triphosphate (GTP) hydrolysis on the small G protein ADP-ribosylation factor (Arf) 1 at the Golgi apparatus. Although functionally interchangeable, they display little similarity outside the catalytic GTPase-activating protein (GAP) domain, suggesting differential regulation. ArfGAP1 is controlled by membrane curvature through its amphipathic lipid packing sensor motifs, whereas Golgi targeting of ArfGAP2 depends on coatomer, the building block of the COPI coat. Using a reporter fusion approach and in vitro assays, we identified several functional elements in ArfGAP2/3. We show that the Golgi localization of ArfGAP3 depends on both a central basic stretch and a carboxy-amphipathic motif. The basic stretch interacts directly with coatomer, which we found essential for the catalytic activity of ArfGAP3 on Arf1-GTP, whereas the carboxy-amphipathic motif interacts directly with lipid membranes but has minor role in the regulation of ArfGAP3 activity. Our findings indicate that the two types of ArfGAP proteins that reside at the Golgi use a different combination of protein–protein and protein–lipid interactions to promote GTP hydrolysis in Arf1-GTP. 相似文献
12.
Apelin peptides were recently identified as endogenous ligands of the APJ receptor. It has been hypothesized that these peptides are initially provided to the newborn by nursing and might be involved in gastrointestinal tract development. As apelin peptides may have different effects on the APJ receptor as a function of their size, knowledge of their exact structure in early milk is essential to clarify their action in gastrointestinal tract development. Bovine colostrum is thought to contain high concentrations of a wide diversity of apelin peptides, but none of them have yet been rigorously characterized. To identify and monitor apelin peptides in bovine colostrum, we developed a cation exchange extraction step followed by untargeted liquid chromatography coupled to high resolution and high mass accuracy mass spectrometry (LTQ-Orbitrap). Using this approach, we characterized 46 endogenous apelin peptides in bovine colostrum, which varied in relative abundance from one colostrum to another. Mature as well as commercial milk samples were also studied. Taken together, our data demonstrate that the multiplicity and variability of apelin peptides are biologically relevant and change during milk maturation to reach a more constant composition in mature milk. 相似文献