首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   262篇
  免费   24篇
  286篇
  2023年   4篇
  2022年   7篇
  2021年   7篇
  2020年   6篇
  2019年   4篇
  2018年   8篇
  2017年   5篇
  2016年   8篇
  2015年   31篇
  2014年   19篇
  2013年   18篇
  2012年   20篇
  2011年   32篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   9篇
  2006年   10篇
  2005年   13篇
  2004年   9篇
  2003年   13篇
  2002年   11篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1987年   1篇
  1981年   2篇
  1980年   2篇
  1979年   1篇
  1967年   1篇
  1964年   1篇
  1963年   1篇
排序方式: 共有286条查询结果,搜索用时 0 毫秒
41.
Two aspartate protease encoding complementary deoxyribonucleic acids (cDNA) were characterised from the small intestine (posterior midgut) of Triatoma infestans and the corresponding genes were named TiCatD and TiCatD2. The deduced 390 and 393 amino acid sequences of both enzymes contain two regions characteristic for cathepsin D proteases and the conserved catalytic aspartate residues forming the catalytic dyad, but only TiCatD2 possesses an entire C-terminal proline loop. The amino acid sequences of TiCatD and TiCatD2 show 51-58% similarity to other insect cathepsin D-like proteases and, respectively, 88 and 58% similarity to the aspartate protease ASP25 from T. infestans available in the GenBank database. In phylogenetic analysis, TiCatD and ASP25 clearly separate from cathepsin D-like sequences of other insects, TiCatD2 groups with cathepsin D-like proteases with proline loop. The activity of purified TiCatD and TiCatD2 was highest between pH 2 and 4, respectively, and hence, deviate from the pH values of the lumen of the small intestine, which varied in correlation with the time after feeding between pH 5.2 and 6.7 as determined by means of micro pH electrodes. Both cathepsins, TiCatD and TiCatD2, were purified from the lumen of the small intestine using pepstatin affinity chromatography and identified by nanoLC-ESI-MS/MS analysis as those encoded by the cDNAs. The proteolytic activity of the purified enzymes is highest at pH 3 and the respective genes are expressed in the both regions of the midgut, stomach (anterior midgut) and small intestine, not in the rectum, salivary glands, Malpighian tubules or haemocytes. The temporal expression pattern of both genes in the small intestine after feeding revealed a feeding dependent regulation for TiCatD but not for TiCatD2.  相似文献   
42.
43.
Although life histories are shaped by temperature and predation, their joint influence on the interdependence of life‐history traits is poorly understood. Shifts in one life‐history trait often necessitate shifts in another—structured in some cases by trade‐offs—leading to differing life‐history strategies among environments. The offspring size–number trade‐off connects three traits whereby a constant reproductive allocation (R) constrains how the number (O) and size (S) of offspring change. Increasing temperature and size‐independent predation decrease size at and time to reproduction which can lower R through reduced time for resource accrual or size‐constrained fecundity. We investigated how O, S, and R in a clonal population of Daphnia magna change across their first three clutches with temperature and size‐independent predation risk. Early in ontogeny, increased temperature moved O and S along a trade‐off curve (constant R) toward fewer larger offspring. Later in ontogeny, increased temperature reduced R in the no‐predator treatment through disproportionate decreases in O relative to S. In the predation treatment, R likewise decreased at warmer temperatures but to a lesser degree and more readily traded off S for O whereby the third clutch showed a constant allocation strategy of O versus S with decreasing R. Ontogenetic shifts in S and O rotated in a counterclockwise fashion as temperature increased and more drastically under risk of predation. These results show that predation risk can alter the temperature dependence of traits and their interactions through trade‐offs.  相似文献   
44.
Identifying monoclonal antibodies that block human voltage-gated ion channels (VGICs) is a challenging endeavor exacerbated by difficulties in producing recombinant ion channel proteins in amounts that support drug discovery programs. We have developed a general strategy to address this challenge by combining high-level expression of recombinant VGICs in Tetrahymena thermophila with immunization of phylogenetically diverse species and unique screening tools that allow deep-mining for antibodies that could potentially bind functionally important regions of the protein. Using this approach, we targeted human Kv1.3, a voltage-gated potassium channel widely recognized as a therapeutic target for the treatment of a variety of T-cell mediated autoimmune diseases. Recombinant Kv1.3 was used to generate and recover 69 full-length anti-Kv1.3 mAbs from immunized chickens and llamas, of which 10 were able to inhibit Kv1.3 current. Select antibodies were shown to be potent (IC50<10 nM) and specific for Kv1.3 over related Kv1 family members, hERG and hNav1.5.  相似文献   
45.
There is evidence for glycine and GABA(A)-receptor-mediated inhibition of hypoglossal motoneurons in vitro. However, comparable studies have not been performed in vivo, and the interactions of such mechanisms with integrative reflex respiratory control have also not been determined. This study tests the hypotheses that glycine at the hypoglossal motor nucleus (HMN) will suppress genioglossus (GG) muscle activity, even in the presence of hypercapnic respiratory stimulation, and the effects of glycine will be blocked by strychnine. We also determined whether coapplication of glycine and muscimol (GABA(A)- receptor agonist) to the HMN is additive in suppressing GG activity. Twenty-four urethane-anesthetized, tracheotomized, and vagotomized rats were studied. Diaphragm and GG activities, the electroencephalogram, and blood pressure were recorded. Microdialysis probes were implanted into the HMN for delivery of artificial cerebrospinal fluid (control), glycine (0.0001-10 mM), or muscimol (0.1 microM). Increasing glycine at the HMN produced graded suppression of GG activity (P < 0.001), although the GG still responded to stimulation with 7% inspired CO(2) (P = 0.002). Strychnine (0.1 mM) reversed the glycine-mediated suppression of GG activity, whereas combined glycine and muscimol were additive in GG muscle suppression. It remains to be determined whether the recruitment of such glycine and GABA mechanisms explains the periods of major GG suppression in behaviors such as rapid eye movement sleep.  相似文献   
46.
47.
48.
49.
The deleterious effects of inbreeding have been of extreme importance to evolutionary biology, but it has been difficult to characterize the complex interactions between genetic constraints and selection that lead to fitness loss and recovery after inbreeding. Haploid organisms and selfing organisms like the nematode Caenorhabditis elegans are capable of rapid recovery from the fixation of novel deleterious mutation; however, the potential for recovery and genomic consequences of inbreeding in diploid, outcrossing organisms are not well understood. We sought to answer two questions: 1) Can a diploid, outcrossing population recover from inbreeding via standing genetic variation and new mutation? and 2) How does allelic diversity change during recovery? We inbred C. remanei, an outcrossing relative of C. elegans, through brother-sister mating for 30 generations followed by recovery at large population size. Inbreeding reduced fitness but, surprisingly, recovery from inbreeding at large populations sizes generated only very moderate fitness recovery after 300 generations. We found that 65% of ancestral single nucleotide polymorphisms (SNPs) were fixed in the inbred population, far fewer than the theoretical expectation of ∼99%. Under recovery, 36 SNPs across 30 genes involved in alimentary, muscular, nervous, and reproductive systems changed reproducibly across replicates, indicating that strong selection for fitness recovery does exist. Our results indicate that recovery from inbreeding depression via standing genetic variation and mutation is likely to be constrained by the large number of segregating deleterious variants present in natural populations, limiting the capacity for recovery of small populations.  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号