首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   270篇
  免费   42篇
  312篇
  2022年   1篇
  2021年   3篇
  2019年   2篇
  2018年   5篇
  2017年   3篇
  2016年   7篇
  2015年   12篇
  2014年   10篇
  2013年   15篇
  2012年   22篇
  2011年   22篇
  2010年   8篇
  2009年   12篇
  2008年   20篇
  2007年   11篇
  2006年   12篇
  2005年   12篇
  2004年   13篇
  2003年   10篇
  2002年   15篇
  2001年   10篇
  2000年   8篇
  1999年   10篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   4篇
  1994年   1篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   9篇
  1985年   3篇
  1984年   3篇
  1983年   2篇
  1982年   4篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   1篇
  1973年   1篇
  1970年   1篇
  1967年   1篇
  1966年   1篇
  1962年   1篇
排序方式: 共有312条查询结果,搜索用时 15 毫秒
71.
Transforming growth factor alpha is one of the most potent growth factors for gastrointestinal epithelium. In this study, we examined the roles of cyclooxygenase-2 on proliferation and morphogenesis of RGM1 rat gastric epithelial cells after stimulation with transforming growth factor alpha in vitro, RGM1 cells increased expression of cyclooxygenase-2 messenger RNA 20-60 min after stimulation with transforming growth factor alpha. Transforming growth factor alpha stimulated [3H]thymidine incorporation and tubulogenesis of RGM1 cells in collagen matrix, both of which were significantly suppressed by treatment with a cyclooxygenase-2 specific inhibitor, NS-398 or cyclooxygenase-2 antisense oligonucleotide. Both of the treatment lowered prostanoid production by enzyme immunoassay. The transforming growth factor alpha-induced expression of cyclooxygenase-2 is followed by cell proliferation and development of tubular morphology of RGM1 gastric epithelial cells. Treatment with cyclooxygenase-2 inhibitor and cyclooxygenase-2 antisense oligonucleotide suppressed these responses induced by transforming growth factor alpha suggesting the involvement of cyclooxygenase-2 in proliferation and morphogenesis in gastric mucosal epithelium.  相似文献   
72.
Estrogen receptor (ER)-alpha can signal either via estrogen response element (ERE)-mediated pathways or via alternate pathways involving protein-protein or membrane signaling. We previously demonstrated that, as compared to wild type (WT) controls, mice expressing a mutant ER-alpha lacking the ability to bind EREs (non-classical estrogen receptor knock-in (NERKI)) display significant impairments in the skeletal response to estrogen. To elucidate the mechanism(s) underlying these in vivo deficits, we generated U2OS cells stably expressing either WT ER-alpha or the NERKI receptor. Compared to cells transfected with the control vector, stable expression of ER-alpha, even in the absence of E2, resulted in an increase in mRNA levels for alkaline phosphatase (AP, by 400%, P < 0.01) and a decrease in mRNA levels for insulin growth factor-I (IGF-I) (by 65%, P < 0.001), with no effects on collagen I (col I) or osteocalcin (OCN) mRNA levels. By contrast, stable expression of the NERKI receptor resulted in the suppression of mRNA levels for AP, col I, OCN, and IGF-I (by 62, 89, 60, and 70%, P < 0.001). While E2 increased mRNA levels of AP, OCN, col I, and IGF-I in ER-alpha cells, E2 effects in the NERKI cells on AP and OCN mRNA levels were attenuated, with a trend for E2 to inhibit col I mRNA levels. In addition, E2 had no effects on IGF-I mRNA levels in NERKI cells. Collectively, these findings indicate that ERE signaling plays a significant role in mediating effects of estrogen on osteoblastic differentiation markers and on IGF-I mRNA levels.  相似文献   
73.
Based on previous studies, Candida utilis pyruvate decarboxylase (PDC) proved to be a stable and high productivity enzyme for the production (R)-phenylacetylcarbinol (PAC), a pharmaceutical precursor. However, a portion of the substrate pyruvate was lost to by-product formation. To identify a source of PDC which might overcome this problem, strains of four yeasts -- C. utilis, Candida tropicalis, Saccharomyces cerevisiae and Kluyveromyces marxianus -- were investigated for their PDC biocatalytic properties. Biotransformations were conducted with benzaldehyde and pyruvate as substrates and three experimental systems were employed (in the order of increasing benzaldehyde concentrations): (I) aqueous (soluble benzaldehyde), (II) aqueous/benzaldehyde emulsion, and (III) aqueous/octanol-benzaldehyde emulsion. Although C. utilis PDC resulted in the highest concentrations of PAC and was the most stable enzyme, C. tropicalis PDC was associated with the lowest acetoin formation. For example, in system (III) the ratio of PAC over acetoin was 35 g g(-1) for C. tropicalis PDC and 9.2 g g(-1) for C. utilis PDC. The study thereby opens up the potential to design a PDC with both high productivity and high yield characteristics.  相似文献   
74.
Silage quality is typically assessed by the measurement of several individual parameters, including pH, lactic acid, acetic acid, bacterial numbers, and protein content. The objective of this study was to use a holistic metabolic fingerprinting approach, combining a high-throughput microtiter plate-based fermentation system with Fourier transform infrared (FT-IR) spectroscopy, to obtain a snapshot of the sample metabolome (typically low-molecular-weight compounds) at a given time. The aim was to study the dynamics of red clover or grass silage fermentations in response to various inoculants incorporating lactic acid bacteria (LAB). The hyperspectral multivariate datasets generated by FT-IR spectroscopy are difficult to interpret visually, so chemometrics methods were used to deconvolute the data. Two-phase principal component-discriminant function analysis allowed discrimination between herbage types and different LAB inoculants and modeling of fermentation dynamics over time. Further analysis of FT-IR spectra by the use of genetic algorithms to identify the underlying biochemical differences between treatments revealed that the amide I and amide II regions (wavenumbers of 1,550 to 1,750 cm(-1)) of the spectra were most frequently selected (reflecting changes in proteins and free amino acids) in comparisons between control and inoculant-treated fermentations. This corresponds to the known importance of rapid fermentation for the efficient conservation of forage proteins.  相似文献   
75.
76.
Primary charge separation within Photosystem II (PS II) is much slower (time constant 21 ps) than the equivalent step in the related reaction center (RC) found in purple bacteria ( 3 ps). In the case of the bacterial RC, replacement of a specific tyrosine residue within the M subunit (at position 210 in Rhodobacter sphaeroides), by a leucine residue slows down charge separation to 20 ps. Significantly the analogous residue in PS II, within the D2 polypeptide, is a leucine not a tyrosine (at position D2-205, Chlamydomonas reinhardtii numbering). Consequently, it has been postulated [Hastings et al. (1992) Biochemistry 31: 7638–7647] that the rate of electron transfer could be increased in PS II by replacing this leucine residue with tyrosine. We have tested this hypothesis by constructing the D2-Leu205Tyr mutant in the green alga, Chlamydomonas reinhardtii, through transformation of the chloroplast genome. Primary charge separation was examined in isolated PS II RCs by time-resolved optical spectroscopy and was found to occur with a time constant of 40 ps. We conclude that mutation of D2-Leu205 to Tyr does not increase the rate of charge separation in PS II. The slower kinetics of primary charge separation in wild type PS II are probably not due to a specific difference in primary structure compared with the bacterial RC but rather a consequence of the P680 singlet excited state being a shallower trap for excitation energy within the reaction center.  相似文献   
77.
78.
79.
The yeast Williopsis mrakii produces a mycocin or yeast killer toxin designated HMK; this toxin exhibits high thermal stability, high pH stability, and a broad spectrum of activity against other yeasts. We describe construction of a synthetic gene for mycocin HMK and heterologous expression of this toxin in Aspergillus niger. Mycocin HMK was fused to a glucoamylase protein carrier, which resulted in secretion of biologically active mycocin into the culture media. A partial purification protocol was developed, and a comparison with native W. mrakii mycocin showed that the heterologously expressed mycocin had similar physiological properties and an almost identical spectrum of biological activity against a number of yeasts isolated from silage and yoghurt. Two food and feed production systems prone to yeast spoilage were used as models to assess the ability of mycocin HMK to act as a biocontrol agent. The onset of aerobic spoilage in mature maize silage was delayed by application of A. niger mycocin HMK on opening because the toxin inhibited growth of the indigenous spoilage yeasts. This helped maintain both higher lactic acid levels and a lower pH. In yoghurt spiked with dairy spoilage yeasts, A. niger mycocin HMK was active at all of the storage temperatures tested at which yeast growth occurred, and there was no resurgence of resistant yeasts. The higher the yeast growth rate, the more effective the killing action of the mycocin. Thus, mycocin HMK has potential applications in controlling both silage spoilage and yoghurt spoilage caused by yeasts.  相似文献   
80.
The enormous variety of substances which may be added to forage in order to manipulate and improve the ensilage process presents an empirical, combinatorial optimization problem of great complexity. To investigate the utility of genetic algorithms for designing effective silage additive combinations, a series of small-scale proof of principle silage experiments were performed with fresh ryegrass. Having established that significant biochemical changes occur over an ensilage period as short as 2 days, we performed a series of experiments in which we used 50 silage additive combinations (prepared by using eight bacterial and other additives, each of which was added at six different levels, including zero [i.e. , no additive]). The decrease in pH, the increase in lactate concentration, and the free amino acid concentration were measured after 2 days and used to calculate a "fitness" value that indicated the quality of the silage (compared to a control silage made without additives). This analysis also included a "cost" element to account for different total additive levels. In the initial experiment additive levels were selected randomly, but subsequently a genetic algorithm program was used to suggest new additive combinations based on the fitness values determined in the preceding experiments. The result was very efficient selection for silages in which large decreases in pH and high levels of lactate occurred along with low levels of free amino acids. During the series of five experiments, each of which comprised 50 treatments, there was a steady increase in the amount of lactate that accumulated; the best treatment combination was that used in the last experiment, which produced 4.6 times more lactate than the untreated silage. The additive combinations that were found to yield the highest fitness values in the final (fifth) experiment were assessed to determine a range of biochemical and microbiological quality parameters during full-term silage fermentation. We found that these combinations compared favorably both with uninoculated silage and with a commercial silage additive. The evolutionary computing methods described here are a convenient and efficient approach for designing silage additives.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号