首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   445篇
  免费   71篇
  516篇
  2023年   5篇
  2021年   5篇
  2020年   5篇
  2019年   7篇
  2018年   4篇
  2017年   10篇
  2016年   8篇
  2015年   13篇
  2014年   15篇
  2013年   28篇
  2012年   18篇
  2011年   24篇
  2010年   21篇
  2009年   10篇
  2008年   20篇
  2007年   19篇
  2006年   16篇
  2005年   28篇
  2004年   19篇
  2003年   12篇
  2002年   13篇
  2001年   7篇
  2000年   8篇
  1999年   14篇
  1998年   6篇
  1997年   4篇
  1995年   3篇
  1994年   5篇
  1992年   5篇
  1991年   8篇
  1990年   9篇
  1989年   6篇
  1988年   11篇
  1987年   7篇
  1986年   9篇
  1985年   5篇
  1984年   8篇
  1982年   3篇
  1980年   11篇
  1979年   4篇
  1978年   10篇
  1977年   4篇
  1975年   9篇
  1974年   4篇
  1973年   5篇
  1971年   4篇
  1970年   4篇
  1968年   6篇
  1967年   5篇
  1915年   2篇
排序方式: 共有516条查询结果,搜索用时 15 毫秒
31.
Accumulating evidence suggests that mitogen-activated protein kinase signaling pathways form modular signaling complexes. Because the mixed lineage kinase dual leucine zipper-bearing kinase (DLK) is a large modular protein, structure-function analysis was undertaken to examine the role of DLK domains in macromolecular complex formation. DLK mutants were used to demonstrate that a DLK leucine zipper-leucine zipper interaction is necessary for DLK dimerization and to show that DLK dimerization mediated by the leucine zipper domain is prerequisite for DLK activity and subsequent activation of stress-activated protein kinase (SAPK). Heterologous mixed lineage kinase family members can be co-immunoprecipitated. However, the DLK leucine zipper domain interacted specifically only with the DLK leucine zipper domain; in contrast, DLK NH(2)-terminal region was sufficient to co-immunoprecipitate leucine zipper kinase and DLK. DLK has been shown to associate with the putative scaffold protein JIP1. This association occurred through the DLK NH(2)-terminal region and occurred independently of DLK catalytic activity. Although the DLK NH(2)-terminal region associated directly with JIP-1, this region did not interact directly with either DLK or leucine zipper kinase. Therefore, DLK may interact with heterologous mixed lineage kinase proteins via intermediary proteins. The NH(2)-terminal region of overexpressed DLK was required for activation of SAPK. These results provide evidence that protein complex formation is required for signal transduction from DLK to SAPK.  相似文献   
32.
Transmission of M. ulcerans, the etiological agent of Buruli ulcer, from the environment to humans remains an enigma despite decades of research. Major transmission hypotheses propose 1) that M. ulcerans is acquired through an insect bite or 2) that bacteria enter an existing wound through exposure to a contaminated environment. In studies reported here, a guinea pig infection model was developed to determine whether Buruli ulcer could be produced through passive inoculation of M. ulcerans onto a superficial abrasion. The choice of an abrasion model was based on the fact that most bacterial pathogens infecting the skin are able to infect an open lesion, and that abrasions are extremely common in children. Our studies show that after a 90d infection period, an ulcer was present at intra-dermal injection sites of all seven animals infected, whereas topical application of M. ulcerans failed to establish an infection. Mycobacterium ulcerans was cultured from all injection sites whereas infected abrasion sites healed and were culture negative. A 14d experiment was conducted to determine how long organisms persisted after inoculation. Mycobacterium ulcerans was isolated from abrasions at one hour and 24 hours post infection, but cultures from later time points were negative. Abrasion sites were qPCR positive up to seven days post infection, but negative at later timepoints. In contrast, M. ulcerans DNA was detected at intra-dermal injection sites throughout the study. M. ulcerans was cultured from injection sites at each time point. These results suggest that injection of M. ulcerans into the skin greatly facilitates infection and lends support for the role of an invertebrate vector or other route of entry such as a puncture wound or deep laceration where bacteria would be contained within the lesion. Infection through passive inoculation into an existing abrasion appears a less likely route of entry.  相似文献   
33.
Merritt DJ 《Tissue & cell》1989,21(2):281-298
The gustatory, olfactory, touch and stress receptors on the cerci of Lucilia cuprina Wied. (Diptera: Calliphoridae) have either two or three enveloping cells. The gustatory and olfactory sensilla have three enveloping cells: a tormogen, trichogen and thecogen cell. The tormogen and trichogen cells contribute to a sub-cuticular sensillar lumen which divides into two lobes basally. The thecogen cell forms a lumen around the dendrites. Distally the dendrites lie in the contents of the thecogen lumen within the dendritic sheath. Proximally the dendrites embed in the thecogen cell which has an expanded, microlamellate lumen basally. The sensillar lumen of the mechanosensory (trichoid mechanoreceptors and campaniform) sensilla is formed by a single enveloping cell: the presumptive tormogen cell. In trichoid mechanoreceptors the thecogen lumen is restricted to the region of the transitional region of the dendrite whereas the thecogen lumen of campaniform sensilla extends proximally although it is not as well-developed as that of the chemoreceptive sensilla. The dendrites of all sensillum types on the cerci have a granular body in the transitional region: a situation which has not been previously reported in chemoreceptive sensilla although common in the mechanoreceptors of Calliphoridae and Sarcophagidae.  相似文献   
34.
Adenovirus (Ad) gene transfer vectors can be used to transfer and express antigens and function as strong adjuvants and thus are useful platforms for the development of genetic vaccines. Based on the hypothesis that Ad vectors with enhanced infectibility of dendritic cells (DC) may be able to evoke enhanced immune responses against antigens encoded by the vector in vivo, the present study analyzes the vaccine potential of an Ad vector expressing beta-galactosidase as a model antigen and genetically modified with RGD on the fiber knob [AdZ.F(RGD)] to more selectively infect DC and consequently enhance immunity against the beta-galactosidase antigen. Infection of murine DC in vitro with AdZ.F(RGD) showed an eightfold-increased transgene expression following infection compared to AdZ (also expressing beta-galactosidase, but with a wild-type capsid). Binding, cellular uptake, and trafficking in DC were also increased with AdZ.F(RGD) compared to AdZ. To determine whether AdZ.F(RGD) could evoke enhanced immune responses to beta-galactosidase in vivo, C57BL/6 mice were immunized with AdZ.F(RGD) or AdZ subcutaneously via the footpad. Humoral responses with both vectors were comparable, with similar anti-beta-galactosidase antibody levels following vector administration. However, cellular responses to beta-galactosidase were significantly enhanced, with the frequency of CD4(+) as well as the CD8(+) beta-galactosidase-specific gamma interferon response in cells isolated from the draining lymph nodes increased following immunization with AdZ.F(RGD) compared to Ad.Z (P < 0.01). Importantly, this enhanced cellular immune response of the AdZ.F(RGD) vector was sufficient to evoke enhanced inhibition of the growth of preexisting tumors expressing beta-galactosidase: BALB/c mice implanted with the CT26 syngeneic beta-galactosidase-expressing colon carcinoma cell line and subsequently immunized with AdZ.F(RGD) showed decreased tumor growth and improved survival compared to mice immunized with AdZ. These data demonstrate that addition of an RGD motif to the Ad fiber knob increases the infectibility of DC and leads to enhanced cellular immune responses to the Ad-transferred transgene, suggesting that the RGD capsid modification may be useful in developing Ad-based vaccines.  相似文献   
35.
The desmosomal cadherin desmocollin (Dsc)1 is expressed in upper epidermis where strong adhesion is required. To investigate its role in vivo, we have genetically engineered mice with a targeted disruption in the Dsc1 gene. Soon after birth, null mice exhibit flaky skin and a striking punctate epidermal barrier defect. The epidermis is fragile, and acantholysis in the granular layer generates localized lesions, compromising skin barrier function. Neutrophils accumulate in the lesions and further degrade the tissue, causing sloughing (flaking) of lesional epidermis, but rapid wound healing prevents the formation of overt lesions. Null epidermis is hyperproliferative and overexpresses keratins 6 and 16, indicating abnormal differentiation. From 6 wk, null mice develop ulcerating lesions resembling chronic dermatitis. We speculate that ulceration occurs after acantholysis in the fragile epidermis because environmental insults are more stringent and wound healing is less rapid than in neonatal mice. This dermatitis is accompanied by localized hair loss associated with formation of utriculi and dermal cysts, denoting hair follicle degeneration. Possible resemblance of the lesions to human blistering diseases is discussed. These results show that Dsc1 is required for strong adhesion and barrier maintenance in epidermis and contributes to epidermal differentiation.  相似文献   
36.
A novel series of cyclobutenedione centered C(4)-alkyl substituted furanyl analogs was developed as potent CXCR2 and CXCR1 antagonists. Compound 16 exhibits potent inhibitory activities against IL-8 binding to the receptors (CXCR2 Ki=1 nM, IC(50)=1.3 nM; CXCR1 Ki=3 nM, IC(50)=7.3 nM), and demonstrates potent inhibition against both Gro-alpha and IL-8 induced hPMN migration (chemotaxis: CXCR2 IC(50)=0.5 nM, CXCR1 IC(50)=37 nM). In addition, 16 has shown good oral pharmacokinetic profiles in rat, mouse, monkey, and dog.  相似文献   
37.
Martinez GQ  Maduke M 《PloS one》2008,3(7):e2746

Background

ClC-Kb and ClC-Ka are homologous chloride channels that facilitate chloride homeostasis in the kidney and inner ear. Disruption of ClC-Kb leads to Bartter''s Syndrome, a kidney disease. A point mutation in ClC-Kb, R538P, linked to Bartter''s Syndrome and located in the C-terminal cytoplasmic domain was hypothesized to alter electrophysiological properties due to its proximity to an important membrane-embedded helix.

Methodology/Principal Findings

Two-electrode voltage clamp experiments were used to examine the electrophysiological properties of the mutation R538P in both ClC-Kb and ClC-Ka. R538P selectively abolishes extracellular calcium activation of ClC-Kb but not ClC-Ka. In attempting to determine the reason for this specificity, we hypothesized that the ClC-Kb C-terminal domain had either a different oligomeric status or dimerization interface than that of ClC-Ka, for which a crystal structure has been published. We purified a recombinant protein corresponding to the ClC-Kb C-terminal domain and used multi-angle light scattering together with a cysteine-crosslinking approach to show that the dimerization interface is conserved between the ClC-Kb and ClC-Ka C-terminal domains, despite the fact that there are several differences in the amino acids that occur at this interface.

Conclusions

The R538P mutation in ClC-Kb, which leads to Bartter''s Syndrome, abolishes calcium activation of the channel. This suggests that a significant conformational change – ranging from the cytoplasmic side of the protein to the extracellular side of the protein – is involved in the Ca2+-activation process for ClC-Kb, and shows that the cytoplasmic domain is important for the channel''s electrophysiological properties. In the highly similar ClC-Ka (90% identical), the R538P mutation does not affect activation by extracellular Ca2+. This selective outcome indicates that ClC-Ka and ClC-Kb differ in how conformational changes are translated to the extracellular domain, despite the fact that the cytoplasmic domains share the same quaternary structure.  相似文献   
38.
We demonstrate a highly parallel strategy to analyze the impact of single nucleotide mutations on protein function. Using our method, it is possible to screen a population and quickly identify a subset of functionally interesting mutants. Our method utilizes a combination of yeast functional complementation, growth competition of mutant pools, and polymerase colonies. A defined mutant human glucose-6-phosphate-dehydrogenase library was constructed which contains all possible single nucleotide missense mutations in the eight-residue glucose-6-phosphate binding peptide of the enzyme. Mutant human enzymes were expressed in a zwf1 (gene encoding yeast homologue) deletion strain of Saccharomyces cerevisiae. Growth rates of the 54 mutant strains arising from this library were measured in parallel in conditions selective for active hG6PD. Several residues were identified which tolerated no mutations (Asp200, His201 and Lys205) and two (Ile199 and Leu203) tolerated several substitutions. Arg198, Tyr202, and Gly204 tolerated only 1-2 specific substitutions. Generalizing from the positions of tolerated and non-tolerated amino acid substitutions, hypotheses were generated about the functional role of specific residues, which could, potentially, be tested using higher resolution/lower throughput methods.  相似文献   
39.
Demand for restoration of resilient, self‐sustaining, and biodiverse natural ecosystems as a conservation measure is increasing globally; however, restoration efforts frequently fail to meet standards appropriate for this objective. Achieving these standards requires management underpinned by input from diverse scientific disciplines including ecology, biotechnology, engineering, soil science, ecophysiology, and genetics. Despite increasing restoration research activity, a gap between the immediate needs of restoration practitioners and the outputs of restoration science often limits the effectiveness of restoration programs. Regrettably, studies often fail to identify the practical issues most critical for restoration success. We propose that part of this oversight may result from the absence of a considered statement of the necessary practical restoration science questions. Here we develop a comprehensive framework of the research required to bridge this gap and guide effective restoration. We structure questions in five themes: (1) setting targets and planning for success, (2) sourcing biological material, (3) optimizing establishment, (4) facilitating growth and survival, and (5) restoring resilience, sustainability, and landscape integration. This framework will assist restoration practitioners and scientists to identify knowledge gaps and develop strategic research focused on applied outcomes. The breadth of questions highlights the importance of cross‐discipline collaboration among restoration scientists, and while the program is broad, successful restoration projects have typically invested in many or most of these themes. Achieving restoration ecology's goal of averting biodiversity losses is a vast challenge: investment in appropriate science is urgently needed for ecological restoration to fulfill its potential and meet demand as a conservation tool.  相似文献   
40.
Wetlands are the largest natural source of atmospheric methane. Here, we assess controls on methane flux using a database of approximately 19 000 instantaneous measurements from 71 wetland sites located across subtropical, temperate, and northern high latitude regions. Our analyses confirm general controls on wetland methane emissions from soil temperature, water table, and vegetation, but also show that these relationships are modified depending on wetland type (bog, fen, or swamp), region (subarctic to temperate), and disturbance. Fen methane flux was more sensitive to vegetation and less sensitive to temperature than bog or swamp fluxes. The optimal water table for methane flux was consistently below the peat surface in bogs, close to the peat surface in poor fens, and above the peat surface in rich fens. However, the largest flux in bogs occurred when dry 30‐day averaged antecedent conditions were followed by wet conditions, while in fens and swamps, the largest flux occurred when both 30‐day averaged antecedent and current conditions were wet. Drained wetlands exhibited distinct characteristics, e.g. the absence of large flux following wet and warm conditions, suggesting that the same functional relationships between methane flux and environmental conditions cannot be used across pristine and disturbed wetlands. Together, our results suggest that water table and temperature are dominant controls on methane flux in pristine bogs and swamps, while other processes, such as vascular transport in pristine fens, have the potential to partially override the effect of these controls in other wetland types. Because wetland types vary in methane emissions and have distinct controls, these ecosystems need to be considered separately to yield reliable estimates of global wetland methane release.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号