首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   33篇
  免费   2篇
  2021年   1篇
  2020年   4篇
  2019年   1篇
  2016年   3篇
  2015年   4篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   4篇
  2009年   1篇
  2007年   4篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
  1998年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
11.
Gradual regime shifts in spatially extended ecosystems   总被引:1,自引:0,他引:1  
Ecosystem regime shifts are regarded as abrupt global transitions from one stable state to an alternative stable state, induced by slow environmental changes or by global disturbances. Spatially extended ecosystems, however, can also respond to local disturbances by the formation of small domains of the alternative state. Such a response can lead to gradual regime shifts involving front propagation and the coalescence of alternative-state domains. When one of the states is spatially patterned, a multitude of intermediate stable states appears, giving rise to step-like gradual shifts with extended pauses at these states. Using a minimal model, we study gradual state transitions and show that they precede abrupt transitions. We propose indicators to probe gradual regime shifts, and suggest that a combination of abrupt-shift indicators and gradual-shift indicators might be needed to unambiguously identify regime shifts. Our results are particularly relevant to desertification in drylands where transitions to bare soil take place from spotted vegetation, and the degradation process appears to involve step-like events of local vegetation mortality caused by repeated droughts.  相似文献   
12.
Gophen  Moshe  Tsipris  Y.  Meron  M.  Bar-Ilan  I. 《Hydrobiologia》2003,506(1-3):803-809
Hydrobiologia - Lake Hula and its surrounding swamps were drained in the 1950s. Forty years later a draw down of groundwater table and peat soils degradation resulted in damage to agricultural...  相似文献   
13.
14.
Understanding the structure and dynamics of plant communities in water-limited systems often calls for the identification of ecosystem engineers--key species that modify the landscape, redistribute resources and facilitate the growth of other species. Shrubs are excellent examples; they self-organize to form patterns of mesic patches which provide habitats for herbaceous species. In this paper we present a mathematical model for studying ecosystem engineering by woody plant species in drylands. The model captures various feedbacks between biomass and water including water uptake by plants' roots and increased water infiltration at vegetation patches. Both the uptake and the infiltration feedbacks act as mechanisms for vegetation pattern formation, but have opposite effects on the water resource; the former depletes the soil-water content under a vegetation patch, whereas the latter acts to increase it. Varying the relative strength of the two feedbacks we find a trade-off between the engineering capacity of a plant species and its resilience to disturbances. We further identify two basic soil-water distributions associated with engineering at the single patch level, hump-shaped and ring-shaped, and discuss the niches they form for herbaceous species. Finally, we study how pattern transitions at the landscape level feedback to the single patch level by affecting engineering strength.  相似文献   
15.
16.

Background

Childhood diarrhea continues to be a public health problem in developing countries, including Ethiopia. Detecting clusters and trends of childhood diarrhea is important to designing effective interventions. Therefore, this study aimed to investigate spatiotemporal clustering and seasonal variability of childhood diarrhea in northwest Ethiopia.

Methods

Retrospective record review of childhood diarrhea was conducted using quarterly reported data to the district health office for the seven years period beginning July 1, 2007. Thirty three districts were included and geo-coded in this study. Spatial, temporal and space-time scan spatial statistics were employed to identify clusters of childhood diarrhea. Smoothing using a moving average was applied to visualize the trends and seasonal pattern of childhood diarrhea. Statistical analyses were performed using Excel® and SaTScan programs. The maps were plotted using ArcGIS 10.0.

Results

Childhood diarrhea in northwest Ethiopia exhibits statistical evidence of spatial, temporal, and spatiotemporal clustering, with seasonal patterns and decreasing temporal trends observed in the study area. A most likely purely spatial cluster was found in the East Gojjam administrative zone of Gozamin district (LLR = 7123.89, p <0.001). The most likely spatiotemporal cluster was detected in all districts of East Gojjam zone and a few districts of the West Gojjam zone (LLR = 24929.90, p<0.001), appearing from July 1, 2009 to June 30, 2011. One high risk period from July 1, 2008 to June 30, 2010 (LLR = 9655.86, p = 0.001) was observed in all districts. Peak childhood diarrhea cases showed a seasonal trend, occurring more frequently from January to March and April to June.

Conclusion

Childhood diarrhea did not occur at random. It has spatiotemporal variation and seasonal patterns with a decreasing temporal trend. Accounting for the spatiotemporal variation identified in the study areas is advised for the prevention and control of diarrhea.  相似文献   
17.
The study was conducted to evaluate the microbial dynamics during silage of maize stover and banana pseudostem in the environmental conditions of southern Ethiopia. To meet this objective, microsilos containing either maize stover or banana pseudostem, both with and without molasses, were prepared. Subsequently, samples were analysed on day 0, 7, 14, 30, 60 and 90 of the fermentation process. As a result, on day 7, all treatments except banana pseudostem without molasses showed a significant reduction in pH. It was also this silage type that supported the growth of Enterobacteriaceae longer than three other silage types, i.e. until 30 days. The yeasts and moulds and the Clostridum endospore counts also showed a reducing trend in early fermentation and afterwards remained constant until day 90. Illumina MiSeq sequencing revealed that Leuconostoc, Buttiauxella species and Enterobacteriaceae were the most abundant bacteria in the initial phases of the fermentation. Later on, Buttiauxella, Lactobacillus, Weissella and Bifidobacterium species were found to be dominant. In conclusion, silage of the two crop by-products is possible under South Ethiopian conditions. For banana pseudostem, the addition of molasses is crucial for a fast fermentation, in contrast to maize. Upscaling needs to be investigated for the two by-products.  相似文献   
18.
The HIV-1 envelope glycoprotein, gp120, undergoes multiple molecular interactions and structural rearrangements during the course of host cell attachment and viral entry, which are being increasingly defined at the atomic level using isolated proteins. In comparison, antigenic markers of these dynamic changes are essentially unknown for single HIV-1 particles bound to target cells. Such markers should indicate how neutralizing and/or non-neutralizing antibodies might interdict infection by either blocking infection or sensitizing host cells for elimination by Fc-mediated effector function. Here we address this deficit by imaging fluorescently labeled CCR5-tropic HIV-1 pseudoviruses using confocal and superresolution microscopy to track the exposure of neutralizing and non-neutralizing epitopes as they appear on single HIV-1 particles bound to target cells. Epitope exposure was followed under conditions permissive or non-permissive for viral entry to delimit changes associated with virion binding from those associated with post-attachment events. We find that a previously unexpected array of gp120 epitopes is exposed rapidly upon target cell binding. This array comprises both neutralizing and non-neutralizing epitopes, the latter being hidden on free virions yet capable of serving as potent targets for Fc-mediated effector function. Under non-permissive conditions for viral entry, both neutralizing and non-neutralizing epitope exposures were relatively static over time for the majority of bound virions. Under entry-permissive conditions, epitope exposure patterns changed over time on subsets of virions that exhibited concurrent variations in virion contents. These studies reveal that bound virions are distinguished by a broad array of both neutralizing and non-neutralizing gp120 epitopes that potentially sensitize a freshly engaged target cell for destruction by Fc-mediated effector function and/or for direct neutralization at a post-binding step. The elucidation of these epitope exposure patterns during viral entry will help clarify antibody-mediated inhibition of HIV-1 as it is measured in vitro and in vivo.  相似文献   
19.
A common patch form in dryland landscapes is the vegetation ring. Vegetation patch formation has recently been attributed to self-organization processes that act to increase the availability of water to vegetation patches under conditions of water scarcity. The view of ring formation as a water-limited process, however, has remained largely unexplored. Using laboratory experiments and model studies we identify two distinct mechanisms of ring formation. The first mechanism pertains to conditions of high infiltration contrast between vegetated and bare soil, under which overland water flow is intercepted at the patch periphery. The decreasing amount of water that the patch core receives as the patch expands, leads to central dieback and ring formation. The second mechanism pertains to plants with large lateral root zones, and involves central dieback and ring formation due to increasing water uptake by the newly recruited individuals at the patch periphery. In general the two mechanisms act in concert, but the relative importance of each mechanism depends on environmental conditions. We found that strong seasonal rainfall variability favors ring formation by the overland-flow mechanism, while a uniform rainfall regime favors ring formation by the water-uptake mechanism. Our results explain the formation of rings by fast-growing species with confined root zones in a dry-Mediterranean climate, such as Poa bulbosa. They also explain the formation of rings by slowly growing species with highly extended root zones, such as Larrea tridentata (Creosotebush).  相似文献   
20.
Lipid interfaces, ranging from cell membranes to thin surfactant layers that stabilize lung alveoli, are integral to living systems. Such interfaces are often subjected to mechanical forces, and because of their membrane-like geometry, they can easily deform by bending into localized folds. In this work, we explore the role of small molecules (i.e., glycerol) on the mechanical stability of model lung surfactant monolayers. We demonstrate that the presence of glycerol increases local monolayer bending stiffness by orders of magnitude. Our x-ray and neutron reflectivity measurements indicate that water is preferentially depleted, or glycerol is preferentially enriched, at the lipid headgroup/solvent interface, and that this glycerol-enriched layer extends beneath the monolayer with an adsorption free energy of −2.5 to −4.6 kJ/mol. The dramatic change in membrane bending stiffness in the presence of the sugar adlayer is understood in terms of two models: 1), lipid antiplasticization by glycerol; and 2), a continuum mechanical model of the viscous adlayer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号