首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   20篇
  2021年   3篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   4篇
  2015年   5篇
  2014年   5篇
  2013年   12篇
  2012年   11篇
  2011年   11篇
  2010年   7篇
  2009年   8篇
  2008年   7篇
  2007年   4篇
  2006年   3篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   7篇
  2001年   1篇
  2000年   4篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1989年   3篇
  1988年   5篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1983年   2篇
  1982年   1篇
  1981年   2篇
  1978年   1篇
  1969年   1篇
  1968年   1篇
  1924年   1篇
排序方式: 共有146条查询结果,搜索用时 31 毫秒
71.
γ-Glutamyltranspeptidase (γ-GT) is an ubiquitous enzyme that catalyzes the hydrolysis of γ-glutamyl bonds in glutathione and glutamine and the transfer of the released γ-glutamyl group to amino acids or short peptides. γ-GTs from extremophiles, bacteria adapted to live in hostile environments, were selected as model systems to study the molecular underpinnings of their adaptation to extreme conditions and to find out special properties of potential biotechnological interest. Here, we report the cloning, expression and purification of two members of γ-GT family from two different extremophilic species, Thermus thermophilus (TtGT) and Deinococcus radiodurans (DrGT); the first is an aerobic eubacterium, growing at high temperatures (50–82°C), the second is a polyextremophile, as it tolerates radiations, cold, dehydration, vacuum, and acid. TtGT and DrGT were both synthesized as precursor proteins of 59–60 kDa, undergoing an intramolecular auto-cleavage to yield two subunits of 40 and 19–20 kDa, respectively. However, like the γ-GT from Geobacillus thermodenitrificans, but differently from the other characterized bacterial and eukaryotic γ-GTs, the two new extremophilic enzymes displayed γ-glutamyl hydrolase, but not transpeptidase activity in the 37–50°C temperature range, pH 8.0. The comparison of sequences and structural models of these two proteins with experimental-determined structures of other known mesophilic γ-GTs suggests that the extremophilic members of this protein family have found a common strategy to adapt to different hostile environments. Moreover, a phylogenetic analysis suggests that γ-GTs displaying only γ-glutamyl hydrolase activity could represent the progenitors of the bacterial and eukaryotic counterparts.  相似文献   
72.
73.
74.
75.
76.
Bovine seminal ribonuclease exists in the native state as an equilibrium mixture of a swapped and an unswapped dimer. The molecular envelope and the exposed surface of the two isomers are practically indistinguishable and their diversity is almost completely buried in the interior of the protein. Surprisingly, the cytotoxic and antitumor activity of the enzyme is a peculiar property of the swapped dimer. This buried diversity comes into light in the reducing environment of the cytosol, where the unswapped dimer dissociates into monomers, whereas the swapped one generates a metastable dimeric form (NCD-BS) with a quaternary assembly that allows the molecule to escape the protein inhibitor of ribonucleases. The stability of this quaternary shape was mainly attributed to the combined presence of Pro19 and Leu28. We have prepared and fully characterized by X-ray diffraction the double mutant P19A/L28Q (PALQ) of the seminal enzyme. While the swapped and unswapped forms of the mutant have structures very similar to that of the corresponding wild-type forms, the non-covalent form (NCD-PALQ) adopts an opened quaternary structure, different from that of NCD-BS. Moreover, model building clearly indicates that NCD-PALQ can be easily sequestered by the protein inhibitor. In agreement with these results, cytotoxic assays have revealed that PALQ has limited activity, whereas the single mutants P19A and L28Q display cytotoxic activity against malignant cells almost as large as the wild-type enzyme. The significant increase in the antitumor activity, brought about by the substitution of just two residues in going from the double mutant to the wild-type enzyme, suggests a new strategy to improve this important biological property by strengthening the interface that stabilizes the quaternary structure of NCD-BS.  相似文献   
77.
Epithelial tumors of the pancreas exhibit a wide spectrum of histologies with varying propensities for metastasis and tissue invasion. The histogenic relationship among these tumor types is not well established; moreover, the specific role of genetic lesions in the progression of these malignancies is largely undefined. Transgenic mice with ectopic expression of transforming growth factor alpha (TGF-alpha) in the pancreatic acinar cells develop tubular metaplasia, a potential premalignant lesion of the pancreatic ductal epithelium. To evaluate the cooperative interactions between TGF-alpha and signature mutations in pancreatic tumor genesis and progression, TGFalpha transgenic mice were crossed onto Ink4a/Arf and/or p53 mutant backgrounds. These compound mutant mice developed a novel pancreatic neoplasm, serous cystadenoma (SCA), presenting as large epithelial tumors bearing conspicuous gross and histological resemblances to their human counterpart. TGFalpha animals heterozygous for both the Ink4a/Arf and the p53 mutation showed a dramatically increased incidence of SCA, indicating synergistic interaction of these alleles. Inactivation of p16(Ink4a) by loss of heterozygosity, intragenic mutation, or promoter hypermethylation was a common feature in these SCAs, and correspondingly, none of the tumors expressed wild-type p16(Ink4a). All tumors sustained loss of p53 or Arf, generally in a mutually exclusive fashion. The tumor incidence data and molecular profiles establish a pathogenic role for the dual inactivation of p16(Ink4a) and p19(Arf)-p53 in the development of SCA in mice, demonstrating that p16(Ink4a) is a murine tumor suppressor. This genetically defined model provides insights into the molecular pathogenesis of SCA and serves as a platform for dissection of cell-specific programs of epithelial tumor suppression.  相似文献   
78.
79.
80.
The mechanisms governing development of neural crest-derived melanocytes, and how alterations in these pathways lead to hypopigmentation disorders, are not completely understood. Hepatocyte growth factor/scatter factor (HGF/SF) signaling through the tyrosine-kinase receptor, MET, is capable of promoting the proliferation, increasing the motility, and maintaining high tyrosinase activity and melanin synthesis of melanocytes in vitro. In addition, transgenic mice that ubiquitously overexpress HGF/SF demonstrate hyperpigmentation in the skin and leptomenigenes and develop melanomas. To investigate whether HGF/ SF-MET signaling is involved in the development of neural crest-derived melanocytes, transgenic embryos, ubiquitously overexpressing HGF/SF, were analyzed. In HGF/SF transgenic embryos, the distribution of melanoblasts along the characteristic migratory pathway was not affected. However, additional ectopically localized melanoblasts were also observed in the dorsal root ganglia and neural tube, as early as 11.5 days post coitus (p.c.). We utilized an in vitro neural crest culture assay to further explore the role of HGF/SF-MET signaling in neural crest development. HGF/SF added to neural crest cultures increased melanoblast number, permitted differentiation into pigmented melanocytes, promoted melanoblast survival, and could replace mast-cell growth factor/Steel factor (MGF) in explant cultures. To examine whether HGF/SF-MET signaling is required for the proper development of melanocytes, embryos with a targeted Met null mutation (Met-/-) were analysed. In Met-/- embryos, melanoblast number and location were not overtly affected up to 14 days p.c. These results demonstrate that HGF/SF-MET signaling influences, but is not required for, the initial development of neural crest-derived melanocytes in vivo and in vitro.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号