首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   446篇
  免费   28篇
  国内免费   3篇
  477篇
  2024年   2篇
  2023年   2篇
  2022年   3篇
  2021年   4篇
  2020年   2篇
  2018年   2篇
  2017年   7篇
  2016年   14篇
  2015年   12篇
  2014年   24篇
  2013年   20篇
  2012年   36篇
  2011年   37篇
  2010年   22篇
  2009年   9篇
  2008年   20篇
  2007年   20篇
  2006年   16篇
  2005年   33篇
  2004年   25篇
  2003年   31篇
  2002年   40篇
  2001年   10篇
  2000年   8篇
  1999年   6篇
  1998年   6篇
  1997年   5篇
  1996年   5篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1990年   7篇
  1989年   3篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   6篇
  1982年   2篇
  1981年   3篇
  1980年   1篇
  1979年   1篇
  1978年   1篇
  1975年   2篇
  1973年   2篇
  1971年   1篇
  1970年   2篇
  1969年   1篇
排序方式: 共有477条查询结果,搜索用时 15 毫秒
61.
d-Galacturonic acid, the main monomer of pectin, is an attractive substrate for bioconversions, since pectin-rich biomass is abundantly available and pectin is easily hydrolyzed. l-Galactonic acid is an intermediate in the eukaryotic pathway for d-galacturonic acid catabolism, but extracellular accumulation of l-galactonic acid has not been reported. By deleting the gene encoding l-galactonic acid dehydratase (lgd1 or gaaB) in two filamentous fungi, strains were obtained that converted d-galacturonic acid to l-galactonic acid. Both Trichoderma reesei Δlgd1 and Aspergillus niger ΔgaaB strains produced l-galactonate at yields of 0.6 to 0.9 g per g of substrate consumed. Although T. reesei Δlgd1 could produce l-galactonate at pH 5.5, a lower pH was necessary for A. niger ΔgaaB. Provision of a cosubstrate improved the production rate and titer in both strains. Intracellular accumulation of l-galactonate (40 to 70 mg g biomass−1) suggested that export may be limiting. Deletion of the l-galactonate dehydratase from A. niger was found to delay induction of d-galacturonate reductase and overexpression of the reductase improved initial production rates. Deletion of the l-galactonate dehydratase from A. niger also delayed or prevented induction of the putative d-galacturonate transporter An14g04280. In addition, A. niger ΔgaaB produced l-galactonate from polygalacturonate as efficiently as from the monomer.  相似文献   
62.
Toluene diisocyanate (TDI) and 4,4'-methylenediphenyl diisocyanate (MDI), used in the production of polyurethane foam, are well known for their irritating and sensitizing properties. Contradictory results have been obtained on their genotoxicity. We investigated the genotoxicity and protein binding of inhaled TDI and MDI in mice by examining micronucleated polychromatic erythrocytes (PCEs) in bone marrow and peripheral blood and TDI- and MDI-derived adducts in hemoglobin. Male C57Bl/6J mice (8 per group) were exposed head-only to TDI vapour (mean concentrations 1.1, 1.5, and 2.4mg/m(3); the mixture of isomers contained, on the average, 63% 2,4-TDI and 37% 2,6-TDI) or MDI aerosol (mean concentrations 10.7, 20.9 and 23.3mg/m(3)), during 1h/day for 5 consecutive days. Bone marrow and peripheral blood were collected 24h after the last exposure. Inhalation of TDI caused sensory irritation (SI) in the upper respiratory tract, and cumulative effects were observed at the highest exposure level. Inhalation of MDI produced SI and airflow limitation, and influx of inflammatory cells into the lungs. Hemoglobin adducts detected in the exposed mice resulted from direct binding to globin of 2,4- and 2,6-TDI and MDI, and dose-dependent increases were observed especially for 2,4-TDI-derived adducts. Adducts originating from the diamines of TDI (toluene diamine) or MDI (methylene dianiline) were not observed. No significant increase in the frequency of micronucleated PCEs was detected in the bone marrow or peripheral blood of the mice exposed to TDI or MDI. The ratio of PCEs and normochromatic erythrocytes (NCEs) was reduced at the highest concentration of MDI, and a slight reduction of the PCE/NCE ratio, dependent on cumulative inhaled dose, was also seen with TDI. Our results indicate that inhalation of TDI or MDI (1h/day for 5 days), at levels that induce toxic effects and formation of TDI- or MDI-specific adducts in hemoglobin, does not have detectable genotoxic effects in mice, as studied with the micronucleus assay.  相似文献   
63.
64.
Calcitriol, a hormonal form of Vitamin D, regulates growth of normal and cancer cells of various origins by modulation of peptide growth factors signaling. Platelet-Derived Growth Factor (PDGF) signaling pathway is involved in prostate cancer progression. We studied the expression of PDGF receptors in human prostate primary stromal cells and cancer epithelial cell lines and growth response to PDGF-BB isoform. We found that the expression of PDGF receptors and PDGF-BB-mediated cell growth are regulated by calcitriol in prostate cells. Quantitative RT-PCR analysis revealed a lower level of mRNA for PDGF receptors in LNCaP and PC-3 cells than in primary stromal cells. Western blotting showed a high amount of PDGFRalpha and beta proteins in primary stromal cells that could not be detected in LNCaP, which may explain the resistance of LNCaP cells to growth-promoting effect of PDGF-BB. Addition of Epidermal Growth Factor (EGF) to the culture medium induces the expression of PDGFRbeta and restores responsiveness of LNCaP to PDGF-BB to some extent. Calcitriol down-regulates PDGFRbeta expression and negatively regulates PDGF-mediated cell growth. Calcitriol does not affect PDGFRalpha and PDGF-B mRNA expression. We suggest that inhibition of PDGFRbeta expression by calcitriol might reduce responsiveness of prostate cells to mitogenic action of PDGF-BB.  相似文献   
65.
The structure of an extracellular polysaccharide (EPS) from Streptococcus thermophilus THS has been determined. A combination of component analysis, methylation analysis and NMR spectroscopy shows that the polysaccharide is composed of pentasaccharide repeating units. Sequential information was obtained by two-dimensional (1)H,(1)H-NOESY and (1)H,(13)C-HMBC NMR experiments. NMR data indicate different mobility within the EPS with a stiffer backbone and a more flexible side-chain.  相似文献   
66.
Lipid homeostasis is controlled by various nuclear receptors (NRs), including the peroxisome proliferator-activated receptors (PPARalpha, delta, and gamma), which sense lipid levels and regulate their metabolism. Here we demonstrate that human PPARs have a high basal activity and show ligand-independent coactivator (CoA) association comparable with the NR constitutive androstane receptor. Using PPARgamma as an example, we found that four different amino acid groups contribute to the ligand-independent stabilization of helix 12 of the PPAR ligand-binding domain. These are: (i) Lys329 and Glu499, mediating a charge clamp-type stabilization of helix 12 via a CoA bridge; (ii) Glu352, Arg425, and Tyr505, directly stabilizing the helix via salt bridges and hydrogen bonds; (iii) Lys347 and Asp503, interacting with each other as well as contacting the CoA; and (iv) His351, Tyr(355), His477, and Tyr501, forming a hydrogen bond network. These amino acids are highly conserved within the PPAR subfamily, suggesting that the same mechanism may apply for all three PPARs. Phylogenetic trees of helix 12 amino acid and nucleotide sequences of all crystallized NRs and all human NRs, respectively, indicated a close relationship of PPARs with constitutive androstane receptor and other constitutive active members of the NR superfamily. Taking together, the ligand-independent tight control of the position of the PPAR helix 12 provides an effective alternative for establishing an interaction with CoA proteins. This leads to high basal activity of PPARs and provides an additional view on PPAR signaling.  相似文献   
67.
The C-terminal end of collagen XV, restin, has been the focus of several studies, but the functions of full-length collagen XV have remained unknown. We describe here studies on the production, purification, and function of collagen XV and the production of a monoclonal N-terminal antibody to it. Full-length human collagen XV was produced in insect cells using baculoviruses and purified from the cell culture medium. The yield was 15 mg/liter of cell culture medium. The collagen XV was shown to be trimeric, with disulfide bonds in the collagenous region. Rotary shadowing electron microscopy revealed rod-like molecules with a mean length of 241.8 nm and with a globular domain at one end. The globular domain was verified to be the N-terminal end by N-terminal antibody binding. The molecules show flexibility in their conformation, presumably due to the many interruptions in their collagenous domains. The ability of collagen XV to serve as a substrate for cells was tested in cell adhesion assays, and it was shown that cells did not bind to collagen XV-coated surfaces. When added to the culture medium of fibroblasts and fibrosarcoma cells, however, collagen XV rapidly bound to their fibronectin network. Solid phase assays showed that collagen XV binds to fibronectin, laminin, and vitronectin and that it binds to the collagen/gelatin-binding domain of fibronectin. No binding was detected to fibrillar collagens, fibril-associated collagens, or decorin. Interestingly, collagen XV was found to inhibit the adhesion and migration of fibrosarcoma cells when present in fibronectin-containing matrices.  相似文献   
68.
Microorganisms use different pathways for D-galacturonate catabolism. In the known microbial oxidative pathway, D-galacturonate is oxidized to D-galactarolactone, the lactone hydrolyzed to galactarate, which is further converted to 3-deoxy-2-keto-hexarate and α-ketoglutarate. We have shown recently that Agrobacterium tumefaciens strain C58 contains an uronate dehydrogenase (At Udh) that oxidizes D-galacturonic acid to D-galactarolactone. Here we report identification of a novel enzyme from the same A. tumefaciens strain, which we named Galactarolactone cycloisomerase (At Gci) (E.C. 5.5.1.-), for the direct conversion of the D-galactarolactone to 3-deoxy-2-keto-hexarate. The At Gci enzyme is 378 amino acids long and belongs to the mandelate racemase subgroup in the enolase superfamily. At Gci was heterologously expressed in Escherichia coli, and the purified enzyme was found to exist as an octameric form. It is active both on D-galactarolactone and D-glucarolactone, but does not work on the corresponding linear hexaric acid forms. The details of the reaction mechanism were further studied by NMR and optical rotation demonstrating that the reaction product of At Gci from D-galactaro-1,4-lactone and D-glucaro-1,4-lactone conversion is in both cases the L-threo form of 3-deoxy-2-keto-hexarate.  相似文献   
69.
70.
The study of polyamine flux, i.e. the circulating flow of polyamines through the interconnected biosynthetic and catabolic pathways, is of considerable interest because of the established links between the polyamine metabolism and many diseases, such as cancer and diabetes. To study polyamine flux in detail, a novel method based on following the label incorporation from the (13)C, (15)N-labeled polyamine precursors, arginine, methionine and ornithine, into polyamines by LC-MS/MS was implemented. This methodology was tested on three distinct cell lines with different spermidine/spermine-N (1)-acetyltransferase (SSAT) expression levels, i.e. non-transgenic, transgenic and knockout. These trials allowed the identification of the critical conditions for the successful polyamine flux measurement, such as the functional time frame of label incorporation, until plateau phase with the selected precursor is reached. The novel LC-MS/MS-based method for polyamine flux overcame the limitations of previous existing methodologies, with baseline separation of the different polyamine species and the exact quantification of the incorporated label. Moreover, the obtained results clearly show that the increased SSAT expression is associated with accelerated polyamine flux.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号