首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   164篇
  免费   17篇
  181篇
  2023年   1篇
  2022年   5篇
  2021年   8篇
  2020年   4篇
  2019年   3篇
  2018年   5篇
  2017年   7篇
  2016年   6篇
  2015年   11篇
  2014年   11篇
  2013年   11篇
  2012年   15篇
  2011年   19篇
  2010年   9篇
  2009年   10篇
  2008年   13篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   4篇
  1998年   2篇
  1997年   1篇
  1994年   1篇
排序方式: 共有181条查询结果,搜索用时 15 毫秒
21.
The post‐translational processing of human α1‐antichymotrypsin (AACT) in Bright Yellow‐2 (BY‐2) tobacco cells was assessed in relation to the cellular compartment targeted for accumulation. As determined by pulse‐chase labelling experiments and immunofluorescence microscopy, AACT sent to the vacuole or the endoplasmic reticulum (ER) was found mainly in the culture medium, similar to a secreted form targeted to the apoplast. Unexpectedly, AACT expressed in the cytosol was found in the nucleus under a stable, non‐glycosylated form, in contrast with secreted variants undergoing multiple post‐translational modifications during their transit through the secretory pathway. All secreted forms of AACT were N‐glycosylated, with the presence of complex glycans as observed naturally on human AACT. Proteolytic trimming was also observed for all secreted variants, both during their intracellular transit and after their secretion in the culture medium. Overall, the targeting of human AACT to different compartments of BY‐2 tobacco cells led to the production of two protein products: (i) a stable, non‐glycosylated protein accumulated in the nucleus; and (ii) a heterogeneous mixture of secreted variants resulting from post‐translational N‐glycosylation and proteolytic processing. Overall, these data suggest that AACT is sensitive to resident proteases in the ER, the Golgi and/or the apoplast, and that the production of intact AACT in the plant secretory pathway will require innovative approaches to protect its structural integrity in vivo. Studies are now needed to assess the activity of the different AACT variants, and to identify the molecular determinants for the nuclear localization of AACT expressed in the cytosol.  相似文献   
22.
23.
Translocation of twin-arginine precursor proteins across the cytoplasmic membrane of Escherichia coli requires the three membrane proteins TatA, TatB, and TatC. TatC and TatB were shown to be involved in precursor binding. We have analyzed in vitro a number of single alanine substitutions in tatC that were previously shown to compromise in vivo the function of the Tat translocase. All tatC mutants that were defective in precursor translocation into cytoplasmic membrane vesicles concomitantly interfered with precursor binding not only to TatC but also to TatB. Hence structural changes of TatC that affect precursor targeting simultaneously abolish engagement of the twin-arginine signal sequence with TatB and block the formation of a functional Tat translocase. Since these phenotypes were observed for tatC mutations spread over the first half of TatC, this entire part of the molecule must globally be involved in precursor binding.  相似文献   
24.
An efficient optimization method for the crystallization of biological macromolecules has been developed and tested. This builds on a successful high-throughput technique for the determination of initial crystallization conditions. The optimization method takes an initial condition identified through screening and then varies the concentration of the macromolecule, precipitant, and the growth temperature in a systematic manner. The amount of sample and number of steps is minimized and no biochemical reformulation is required. In the current application a robotic liquid handling system enables high-throughput use, but the technique can easily be adapted in a nonautomated setting. This method has been applied successfully for the rapid optimization of crystallization conditions in nine representative cases.  相似文献   
25.
26.
The evolutionary success of bacteria depends greatly on their capacity to continually generate phenotypic diversity. Structured environments are particularly favorable for diversification because of attenuated clonal interference, which renders selective sweeps nearly impossible and enhances opportunities for adaptive radiation. We examined at the microscale level the emergence and the spatial and temporal dynamics of phenotypic diversity and their underlying causes in Escherichia coli colonies. An important dynamic heterogeneity in the growth, metabolic activity, morphology, gene expression patterns, stress response induction, and death patterns among cells within colonies was observed. Genetic analysis indicated that the phenotypic variation resulted mostly from mutations and that indole production, oxidative stress, and the RpoS-regulated general stress response played an important role in the generation of diversity. We observed the emergence and persistence of phenotypic variants within single colonies that exhibited variable fitness compared to the parental strain. Some variants showed improved capacity to produce biofilms, whereas others were able to use different nutrients or to tolerate antibiotics or oxidative stress. Taken together, our data show that bacterial colonies provide an ecological opportunity for the generation and maintenance of vast phenotypic diversity, which may increase the probability of population survival in unpredictable environments.  相似文献   
27.
International Microbiology - Seven metal-resistant yeast strains were isolated and selected from Dayet Oum Ghellaz Lake water (northwest of Algeria) known as a highly polluted area by lead and...  相似文献   
28.
Lesch-Nyhan disease (LND) is a severe X-linked neurological disorder caused by a deficiency of hypoxanthine phosphoribosyltransferase (HPRT). In contrast, HPRT-deficiency in the mouse does not result in the profound phenotypes such as self-injurious behavior observed in humans, and the genetic basis for this phenotypic disparity between HPRT-deficient humans and mice is unknown. To test the hypothesis that HPRT deficiency is modified by the presence/absence of phosphoribosyltransferase domain containing 1 (PRTFDC1), a paralog of HPRT that is a functional gene in humans but an inactivated pseudogene in mice, we created transgenic mice that express human PRTFDC1 in wild-type and HPRT-deficient backgrounds. Male mice expressing PRTFDC1 on either genetic background were viable and fertile. However, the presence of PRTFDC1 in the HPRT-deficient, but not wild-type mice, increased aggression as well as sensitivity to a specific amphetamine-induced stereotypy, both of which are reminiscent of the increased aggressive and self-injurious behavior exhibited by patients with LND. These results demonstrate that PRTFDC1 is a genetic modifier of HPRT-deficiency in the mouse and could therefore have important implications for unraveling the molecular etiology of LND.  相似文献   
29.

Background  

Analysis of large scale diversity in bacterial genomes has mainly focused on elements such as pathogenicity islands, or more generally, genomic islands. These comprise numerous genes and confer important phenotypes, which are present or absent depending on strains. We report that despite this widely accepted notion, most diversity at the species level is composed of much smaller DNA segments, 20 to 500 bp in size, which we call microdiversity.  相似文献   
30.
Meriem Alami  Dusan Lazar  Beverley R. Green 《BBA》2012,1817(9):1557-1564
Aureococcus anophagefferens is a picoplanktonic microalga that is very well adapted to growth at low nutrient and low light levels, causing devastating blooms (“brown tides”) in estuarine waters. To study the factors involved in long-term acclimation to different light intensities, cells were acclimated for a number of generations to growth under low light (20 μmol photons m? 2 s? 1), medium light (60 or 90 μmol photons m? 2 s? 1) and high light (200 μmol photons m? 2 s? 1), and were analyzed for their contents of xanthophyll cycle carotenoids (the D pool), fucoxanthin and its derivatives (the F pool), Chls c2 and c3, and fucoxanthin Chl a/c polypeptides (FCPs). Higher growth light intensities resulted in increased steady state levels of both diadinoxanthin and diatoxanthin. However, it also resulted in the conversion of a significant fraction of fucoxanthin to 19′-butanoyloxyfucoxanthin without a change in the total F pool. The increase in 19′-butanoyloxyfucoxanthin was paralleled by a decrease in the effective antenna size, determined from the slope of the change in F0 as a function of increasing light intensity. Transfer of acclimated cultures to a higher light intensity showed that the conversion of fucoxanthin to its derivative was a relatively slow process (time-frame of hours). We suggest the replacement of fucoxanthin with the bulkier 19′-butanoyloxyfucoxanthin results in a decrease in the light-harvesting efficiency of the FCP antenna and is part of the long-term acclimative response to growth at higher light intensities.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号