首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   234篇
  免费   19篇
  2022年   1篇
  2021年   5篇
  2020年   3篇
  2019年   3篇
  2018年   7篇
  2016年   4篇
  2015年   11篇
  2014年   10篇
  2013年   13篇
  2012年   13篇
  2011年   13篇
  2010年   9篇
  2009年   8篇
  2008年   14篇
  2007年   18篇
  2006年   14篇
  2005年   14篇
  2004年   12篇
  2003年   9篇
  2002年   11篇
  2001年   9篇
  2000年   9篇
  1999年   6篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   2篇
  1991年   4篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1984年   1篇
  1980年   1篇
  1970年   1篇
排序方式: 共有253条查询结果,搜索用时 500 毫秒
41.

Background

Inflammatory bowel disease is a group of pathologies characterised by chronic inflammation of the intestine and an unclear aetiology. Its main manifestations are Crohn’s disease and ulcerative colitis. Currently, biopsies are the most used diagnostic tests for these diseases and metabolomics could represent a less invasive approach to identify biomarkers of disease presence and progression.

Objectives

The lipid and the polar metabolite profile of plasma samples of patients affected by inflammatory bowel disease have been compared with healthy individuals with the aim to find their metabolomic differences. Also, a selected sub-set of samples was analysed following solid phase extraction to further characterise differences between pathological samples.

Methods

A total of 200 plasma samples were analysed using drift tube ion mobility coupled with time of flight mass spectrometry and liquid chromatography for the lipid metabolite profile analysis, while liquid chromatography coupled with triple quadrupole mass spectrometry was used for the polar metabolite profile analysis.

Results

Variations in the lipid profile between inflammatory bowel disease and healthy individuals were highlighted. Phosphatidylcholines, lyso-phosphatidylcholines and fatty acids were significantly changed among pathological samples suggesting changes in phospholipase A2 and arachidonic acid metabolic pathways. Variations in the levels of cholesteryl esters and glycerophospholipids were also found. Furthermore, a decrease in amino acids levels suggests mucosal damage in inflammatory bowel disease.

Conclusions

Given good statistical results and predictive power of the model produced in our study, metabolomics can be considered as a valid tool to investigate inflammatory bowel disease.
  相似文献   
42.
43.
In this work, evidence for the presence of ferritins in plant mitochondria is supplied. Mitochondria were isolated from etiolated pea stems and Arabidopsis thaliana cell cultures. The proteins were separated by SDS/PAGE. A protein, with an apparent molecular mass of approximately 25-26 kDa (corresponding to that of ferritin), was cross-reacted with an antibody raised against pea seed ferritin. The mitochondrial ferritin from pea stems was also purified by immunoprecipitation. The purified protein was analyzed by MALDI-TOF mass spectrometry and the results of both mass finger print and peptide fragmentation by post source decay assign the polypeptide sequence to the pea ferritin (P < 0.05). The mitochondrial localization of ferritin was also confirmed by immunocytochemistry experiments on isolated mitochondria and cross-sections of pea stem cells. The possible role of ferritin in oxidative stress of plant mitochondria is discussed.  相似文献   
44.
Plant defence mechanisms can reduce the digestive enzyme activity of insect pests. The aim of this study was to determine the relationship between the production of proteinase inhibitors, lipoxygenase and polyphenol oxidase activity in Coffea arabica (Catuai IAC 15) plants, and the digestive enzyme activity in the pest Leucoptera coffeella (Lepidoptera: Lyonetiidae) after feeding on the plant. The production of proteinase inhibitors was evaluated with L‐BApNA as a substrate. We studied lipoxygenase activity with linoleic acid and polyphenol oxidase activity with catechol substrates, in coffee plants damaged (T1) and not damaged (T2) by L. coffeella. L. coffeella digestive enzyme activity was verified by trypsinlike (substrate l ‐BApNA and l ‐TAME), chymotrypsinlike (BTpNA and ATEE), cysteine proteases (l ‐BApNA) and total protease (azocasein). Proteinase inhibitor production and lipoxygenase and polyphenol oxidase activity in C. arabica increases (P ≤ 0.05) with L. coffeella damage. Our results provide important information that these enzymatic activities may play a role in plant defence processes in C. arabica. Trypsinlike activity increases, whereas chymotrypsin‐like and cysteine protease activity decrease in the midgut of L. coffeella, which acts as a defence mechanism.  相似文献   
45.
46.
Sets of primers specific for both pathogenic (SPL) and saprophytic (SSL) Leptospira were designed from ribosomal 16S genes (rrs) available in databases. They were used as two sets of primer pairs for the PCR amplification of known pathogenic and saprophytic strains. It was possible to identify pathogenic strains by the use of SPL primers and saprophytic ones by SSL primers. Serovars from L. meyeri, of controversial pathogenicity status, confirmed the heterogeneity of the species representatives in this respect. Serovars ranarum, sofia and perameles were amplified by SPL and not SSL. Conversely, serovar semaranga was amplified by SSL and not SPL. In order to use SPL primers for the detection of pathogenic leptospires from a natural water environment, we set up an additional semi-nested PCR by employing a second internal primer which succeeded in detecting as few as 5 pathogenic leptospires per ml of water.  相似文献   
47.
The human leukocyte antigen (HLA) complex on chromosome 6p21 has been unambiguously associated with multiple sclerosis (MS). The complex features of the HLA region, especially its high genic content, extreme polymorphism, and extensive linkage disequilibrium, has prevented to resolve the nature of HLA association in MS. We performed a family based association study on the isolated population of the Nuoro province (Sardinia) to clarify the role of HLA genes in MS. The main stage of our study involved an analysis of the ancestral haplotypes A2Cw7B58DR2DQ1 and A30Cw5B18DR3DQ2. On the basis of a multiplicative model, the effect of the first haplotype is protective with an odds ratio (OR) = 0.27 (95% confidence interval CI 0.13–0.57), while that of the second is deleterious, OR 1.78 (95% CI 1.26–2.50). We found both class I (A, Cw, B) and class II (DR, DQ) loci to have an effect on MS susceptibility, but we saw that they act independently from each other. We also performed an exploratory analysis on a set of 796 SNPs in the same HLA region. Our study supports the claim that Class I and Class II loci act independently on MS susceptibility and this has a biological explanation. Also, the analysis of SNPs suggests that there are other HLA genes involved in MS, but replication is needed. This opens up new perspective on the study of MS.  相似文献   
48.
Epithelial cells of the lung are the primary targets for respiratory viruses. Virus-carried single-stranded RNA (ssRNA) can activate Toll-like receptors (TLRs) 7 and 8, whereas dsRNA is bound by TLR3 and a cytoplasmic RNA helicase, retinoic acid-inducible protein I (RIG-I). This recognition leads to the activation of host cell cytokine gene expression. Here we have studied the regulation of influenza A and Sendai virus-induced alpha interferon (IFN-alpha), IFN-beta, interleukin-28 (IL-28), and IL-29 gene expression in human lung A549 epithelial cells. Sendai virus infection readily activated the expression of the IFN-alpha, IFN-beta, IL-28, and IL-29 genes, whereas influenza A virus-induced activation of these genes was mainly dependent on pretreatment of A549 cells with IFN-alpha or tumor necrosis factor alpha (TNF-alpha). IFN-alpha and TNF-alpha induced the expression of the RIG-I, TLR3, MyD88, TRIF, and IRF7 genes, whereas no detectable TLR7 and TLR8 was seen in A549 cells. TNF-alpha also strongly enhanced IKK epsilon mRNA and protein expression. Ectopic expression of a constitutively active form of RIG-I (deltaRIG-I) or IKK epsilon, but not that of TLR3, enhanced the expression of the IFN-beta, IL-28, and IL-29 genes. Furthermore, a dominant-negative form of RIG-I inhibited influenza A virus-induced IFN-beta promoter activity in TNF-alpha-pretreated cells. In conclusion, IFN-alpha and TNF-alpha enhanced the expression of the components of TLR and RIG-I signaling pathways, but RIG-I was identified as the central regulator of influenza A virus-induced expression of antiviral cytokines in human lung epithelial cells.  相似文献   
49.
50.
Nutrition research, like most biomedical disciplines, adopted and often uses experimental approaches based on Beadle and Tatum’s one gene—one polypeptide hypothesis, thereby reducing biological processes to single reactions or pathways. Systems thinking is needed to understand the complexity of health and disease processes requiring measurements of physiological processes, as well as environmental and social factors, which may alter the expression of genetic information. Analysis of physiological processes with omics technologies to assess systems’ responses has only become available over the past decade and remains costly. Studies of environmental and social conditions known to alter health are often not connected to biomedical research. While these facts are widely accepted, developing and conducting comprehensive research programs for health are often beyond financial and human resources of single research groups. We propose a new research program on essential nutrients for optimal underpinning of growth and health (ENOUGH) that will use systems approaches with more comprehensive measurements and biostatistical analysis of the many biological and environmental factors that influence undernutrition. Creating a knowledge base for nutrition and health is a necessary first step toward developing solutions targeted to different populations in diverse social and physical environments for the two billion undernourished people in developed and developing economies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号