首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2364篇
  免费   249篇
  2023年   14篇
  2022年   20篇
  2021年   48篇
  2020年   25篇
  2019年   32篇
  2018年   24篇
  2017年   43篇
  2016年   51篇
  2015年   98篇
  2014年   80篇
  2013年   115篇
  2012年   140篇
  2011年   148篇
  2010年   76篇
  2009年   84篇
  2008年   117篇
  2007年   121篇
  2006年   122篇
  2005年   105篇
  2004年   101篇
  2003年   100篇
  2002年   74篇
  2001年   42篇
  2000年   47篇
  1999年   50篇
  1998年   43篇
  1997年   40篇
  1996年   29篇
  1995年   24篇
  1992年   26篇
  1991年   40篇
  1990年   31篇
  1989年   29篇
  1988年   33篇
  1987年   26篇
  1986年   37篇
  1985年   34篇
  1984年   20篇
  1983年   17篇
  1982年   15篇
  1981年   17篇
  1980年   13篇
  1979年   23篇
  1978年   17篇
  1977年   15篇
  1976年   13篇
  1974年   13篇
  1973年   14篇
  1972年   14篇
  1969年   11篇
排序方式: 共有2613条查询结果,搜索用时 31 毫秒
141.
A gene encoding for arabinose 5-phosphate isomerase (API), which catalyzes the interconversion of d-ribulose 5-phosphate (Ru5P) and d-arabinose 5-phosphate (A5P), has been identified from the genome of Escherichia coli K-12. API is the first enzyme in the biosynthesis of 3-deoxy-d-manno-octulosonate (KDO), a sugar moiety located in the lipopolysaccharide layer of most Gram-negative bacteria. The API gene yrbH is located next to the recently identified specific KDO 8-P phosphatase gene, yrbI. The 328-amino acid open reading frame yrbH was cloned, overexpressed, and characterized. The purified recombinant enzyme is a tetramer and is sensitive to inhibition by zinc cations. API has optimal activity at pH 8.4 and catalytic residues with estimated pKa values of 6.55 +/- 0.04 and 10.34 +/- 0.07. The enzyme is specific for A5P and Ru5P, with apparent Km values of 0.61 +/- 0.06 mm for A5P and 0.35 +/- 0.08 mm for Ru5P. The apparent kcat in the A5P to Ru5P direction is 157 +/- 4 s-1, and in the Ru5P to A5P direction it is 255 +/- 16 s-1. The value of Keq (Ru5P/A5P) is 0.50 +/- 0.06. Homology searches of the E. coli genome suggest yrbH may be one of multiple genes that encode proteins with API activity.  相似文献   
142.
DO-transient nutrient controllers use the dissolved oxygen signal to attempt acetate threshold tracking during fed-batch cultivation of recombinant E. coli. Here we apply DO-transient control to the production of Jembrana disease virus protein in complex Super Luria medium and compare performance against a high-limit pH-stat controller. For induction at medium cell density (harvest between 31 and 32.5 g dcw L) a total productivity of 0.27 g L h was achieved as compared to 0.24 g L h with the high-limit pH-stat. For induction at high cell density (harvest at 60 g dcw L), decreased productivity (0.12 g L h) was attributed to the effect of acetate accumulation on recombinant protein formation and a concomitant lowering of the critical growth rate. Our results suggest that complex media provides a difficult environment for the application of acetate threshold tracking DO-transient control because of difficulties in re-oxidizing acetate, and apparent localized production of acetate below the production threshold (as detected by the DO-transient controller as SPOUR(crit)). Configuring the DO-transient controller to avoid aggressive threshold probing is suggested as a means to improve performance and reduce acetate accumulation in complex media.  相似文献   
143.
Selected for its high relative abundance, a protein spot of MW approximately 75 kDa, pI 5.5 was cored from a Coomassie-stained two-dimensional gel of proteins from 2850 zona-free metaphase II mouse eggs and analyzed by tandem mass spectrometry (TMS), and novel microsequences were identified that indicated a previously uncharacterized egg protein. A 2.4-kb cDNA was then amplified from a mouse ovarian adapter-ligated cDNA library by RACE-PCR, and a unique 2043-bp open reading frame was defined encoding a 681-amino-acid protein. Comparison of the deduced amino acid sequence with the nonredundant database demonstrated that the protein was approximately 40% identical to the calcium-dependent peptidylarginine deiminase (PAD) enzyme family. Northern blotting, RT-PCR, and in situ hybridization analyses indicated that the protein was abundantly expressed in the ovary, weakly expressed in the testis, and absent from other tissues. Based on the homology with PADs and its oocyte-abundant expression pattern, the protein was designated ePAD, for egg and embryo-abundant peptidylarginine deiminase-like protein. Anti-recombinant ePAD monospecific antibodies localized the molecule to the cytoplasm of oocytes in primordial, primary, secondary, and Graafian follicles in ovarian sections, while no other ovarian cell type was stained. ePAD was also expressed in the immature oocyte, mature egg, and through the blastocyst stage of embryonic development, where expression levels began to decrease. Immunoelectron microscopy localized ePAD to egg cytoplasmic sheets, a unique keratin-containing intermediate filament structure found only in mammalian eggs and in early embryos, and known to undergo reorganization at critical stages of development. Previous reports that PAD-mediated deimination of epithelial cell keratin results in cytoskeletal remodeling suggest a possible role for ePAD in cytoskeletal reorganization in the egg and early embryo.  相似文献   
144.
145.
Dbl family members are guanine nucleotide exchange factors specific for Rho guanosine triphosphatases (GTPases) and invariably possess tandem Dbl (DH) and pleckstrin homology (PH) domains. Dbs, a Dbl family member specific for Cdc42 and RhoA, exhibits transforming activity when overexpressed in NIH 3T3 mouse fibroblasts. In this study, the PH domain of Dbs was mutated to impair selectively either guanine nucleotide exchange or phosphoinositide binding in vitro and resulting physiological alterations were assessed. As anticipated, substitution of residues within the PH domain of Dbs integral to the interface with GTPases reduced nucleotide exchange and eliminated the ability of Dbs to transform NIH 3T3 cells. More interestingly, substitutions within the PH domain that prevent interaction with phosphoinositides yet do not alter in vitro activation of GTPases also do not transform NIH 3T3 cell and fail to activate RhoA in vivo despite proper subcellular localization. Therefore, the PH domain of Dbs serves multiple roles in the activation of GTPases and cannot be viewed as a simple membrane-anchoring device. In particular, the data suggest that binding of phosphoinositides to the PH domain within the context of membrane surfaces may direct orientations or conformations of the linked DH and PH domains to regulate GTPases activation.  相似文献   
146.
Studies of the antimicrobial activity of neutrophil defensins have mostly been carried out in microbiological media, and their effects on the host defense in physiological conditions are unclear. We examined 1) the antibacterial activity of defensins in physiological media with and without lung tissue present, 2) the effect of defensins on hydrogen peroxide (H(2)O(2)) production by lung tissue that had been exposed to bacteria, and 3) the effect of diphenyleneiodonium (DPI), an inhibitor of reactive oxygen species formation, on the antibacterial activity of defensins in the presence of lung tissue. Defensins were incubated with Escherichia coli or Pseudomonas aeruginosa in the absence or presence of primary cultured mouse lung explants. Defensins reduced bacterial counts by approximately 65-fold and approximately 25-fold, respectively, at 48 h; bacterial counts were further decreased by approximately 600-fold and approximately 12,000-fold, respectively, in the presence of lung tissue. Defensins induced H(2)O(2) production by lung tissue, and the rate of killing of E. coli by defensins was reduced by approximately 2,500-fold in the presence of 10 microM DPI. We conclude that defensins exert a significant antimicrobial effect under physiological conditions and that this effect is enhanced in the presence of lung tissue by a mechanism that involves the production of reactive oxygen species.  相似文献   
147.
GLUT4 is a mammalian facilitative glucose transporter that is highly expressed in adipose tissue and striated muscle. In response to insulin, GLUT4 moves from intracellular storage areas to the plasma membrane, thus increasing cellular glucose uptake. While the verification of this ‘translocation hypothesis’ (Cushman SW, Wardzala LJ. J Biol Chem 1980;255: 4758–4762 and Suzuki K, Kono T. Proc Natl Acad Sci 1980;77: 2542–2545) has increased our understanding of insulin-regulated glucose transport, a number of fundamental questions remain unanswered. Where is GLUT4 stored within the basal cell? How does GLUT4 move to the cell surface and what mechanism does insulin employ to accelerate this process? Ultimately we require a convergence of trafficking studies with research in signal transduction. However, despite more than 30 years of intensive research we have still not reached this point. The problem is complex, involving at least two separate signal transduction pathways which feed into what appears to be a very dynamic sorting process. Below we discuss some of these complexities and highlight new data that are bringing us closer to the resolution of these questions.  相似文献   
148.
Previous studies have shown that the phytoestrogen, genistein, inhibits basal and forskolin-stimulated progesterone synthesis in rat granulosa-luteal cells. Genistein, however, not only binds and activates the estrogen receptor (ER), but is also a potent inhibitor of tyrosine kinase. In these studies we have compared the effects of estradiol, two other phytoestrogens, apigenin and coumarin, the pesticide, [2-(chlorphenyl)-2-(4-chlorphenyl)-1,1,1-trichlorethan] (2,4'DDT), and the industrial chemical, 4-octyl-phenol, on basal and follicle stimulating hormone (FSH)-stimulated progesterone production in the same experimental system. Only a supraphysiological dose of estradiol (10(-5) M) significantly inhibited basal and forskolin-stimulated progesterone production in granulosa-luteal cells, but had no effect on FSH-stimulated production. In contrast, apigenin, DDT, and octyl-phenol stimulated basal progesterone production at doses around 10(-8) to 10(-7) M, but this effect was reversed at higher doses. Coumarin was without effect. Like basal production, the two phytoestrogens had opposing effects on FSH-stimulated progesterone production. Genistein at 10(-5) M was inhibitory, while apigenin significantly potentiated the response at 19(-7) M. In contrast, DDT had no effect on the FSH-induced response, though 10(-7) M octyl-phenol nearly doubled the response. While all these chemicals are known to interact with the estrogen receptor to a greater or lesser extent, these studies suggest that like genistein, these different endocrine-disrupting chemicals may have other actions apart from those on the estrogen receptor.  相似文献   
149.
Loss of Twist function in the cranial mesenchyme of the mouse embryo causes failure of closure of the cephalic neural tube and malformation of the branchial arches. In the Twist(-/-) embryo, the expression of molecular markers that signify dorsal forebrain tissues is either absent or reduced, but those associated with ventral tissues display expanded domains of expression. Dorsoventral organization of the mid- and hindbrain and the anterior-posterior pattern of the neural tube are not affected. In the Twist(-/-) embryo, neural crest cells stray from the subectodermal migratory path and the late-migrating subpopulation invades the cell-free zone separating streams of cells going to the first and second branchial arches. Cell transplantation studies reveal that Twist activity is required in the cranial mesenchyme for directing the migration of the neural crest cells, as well as in the neural crest cells within the first branchial arch to achieve correct localization. Twist is also required for the proper differentiation of the first arch tissues into bone, muscle, and teeth.  相似文献   
150.
We have characterized a Kazal family serine protease inhibitor, Toxoplasma gondii protease inhibitor 1 (TgPI-1), in the obligate intracellular parasite Toxoplasma gondii. TgPI-1 contains four inhibitor domains predicted to inhibit trypsin, chymotrypsin, and elastase. Antibodies against recombinant TgPI-1 detect two polypeptides, of 43 and 41 kDa, designated TgPI-1(43) and TgPI-1(41), in tachyzoites, bradyzoites, and sporozoites. TgPI-1(43) and TgPI-1(41) are secreted constitutively from dense granules into the excreted/secreted antigen fraction as well as the parasitophorous vacuole that T. gondii occupies during intracellular replication. Recombinant TgPI-1 inhibits trypsin, chymotrypsin, pancreatic elastase, and neutrophil elastase. Immunoprecipitation studies with anti-rTgPI-1 antibodies reveal that recombinant TgPI-1 forms a complex with trypsin that is dependent on interactions with the active site of the protease. TgPI-1 is the first anti-trypsin/chymotrypsin inhibitor to be identified in bradyzoites and sporozoites, stages of the parasite that would be exposed to proteolytic enzymes in the digestive tract of the host.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号