首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809165篇
  免费   89047篇
  国内免费   558篇
  898770篇
  2018年   7657篇
  2017年   7184篇
  2016年   10410篇
  2015年   14343篇
  2014年   16729篇
  2013年   23731篇
  2012年   26593篇
  2011年   26967篇
  2010年   18307篇
  2009年   16677篇
  2008年   23834篇
  2007年   24408篇
  2006年   23027篇
  2005年   22185篇
  2004年   22080篇
  2003年   21205篇
  2002年   20412篇
  2001年   38370篇
  2000年   38589篇
  1999年   30653篇
  1998年   10719篇
  1997年   11215篇
  1996年   10525篇
  1995年   9827篇
  1994年   9556篇
  1993年   9338篇
  1992年   24781篇
  1991年   24041篇
  1990年   23432篇
  1989年   22800篇
  1988年   21164篇
  1987年   19760篇
  1986年   18323篇
  1985年   18147篇
  1984年   15053篇
  1983年   12556篇
  1982年   9525篇
  1981年   8496篇
  1980年   7950篇
  1979年   13492篇
  1978年   10499篇
  1977年   9438篇
  1976年   8542篇
  1975年   9500篇
  1974年   10130篇
  1973年   10030篇
  1972年   8957篇
  1971年   8170篇
  1970年   6974篇
  1969年   6735篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
941.
942.
Parkin mutations produce Parkinson’s disease (PD) in humans and nigrostriatal dopamine lesions related to increased free radicals in mice. We examined the effects of NP7, a synthetic, marine derived, free radical scavenger which enters the brain, on H2O2 toxicity in cultured neurons and glia from wild-type (WT) and parkin null mice (PK-KO).NP7, 5-10 μM, prevented the H2O2 induced apoptosis and necrosis of midbrain neuronal and glial cultures from WT and PK-KO mice. NP7 suppressed microglial activation and the H2O2 induced drop-out of dopamine neurons. Furthermore, NP7 prevented the increased phosphorylation of ERK and AKT induced by H2O2. NP7 may be a promising neuroprotector against oxidative stress in PD.  相似文献   
943.
944.
945.
946.
Growth of Bordetella pertussis in Stainer & Scholte medium in which the NaCl had been replaced by one of several inorganic or organic salts resulted in a large decrease in adenylate cyclase activity, histamine-sensitizing activity and in the amounts of two cell-envelope polypeptides of Mr 28000 and 30000. Although some variation between strains was observed, there was never a case where one of these properties was lost independently of the others. Cultures in which these properties were lost had decreased amounts of extracellular cAMP when compared to NaCl-grown cultures. Adenylate cyclase activity was detected in three locations of B. pertussis cultures (extracellular, extracytoplasmic but cell-associated, and cytoplasmic). After growth in medium containing high concentrations of MgSO4, enzyme activity was decreased to a similar extent in all three locations.  相似文献   
947.
The turnover of phospholipids was investigated in quiescent serum-starved Chinese-hamster ovary (CHO-K1) cells stimulated to progress through the cell cycle by the addition of dialysed bovine serum. A variety of radiolabelling techniques were employed to study the rapid effects of serum on phospholipids and later events during G1 and S phases of the cell cycle. Pulse-labelling studies using [32P]Pi revealed that there was a stimulation of the synthesis rate of all phospholipids investigated during the initial few hours after serum addition. The greatest stimulation (20-fold) was observed in phosphatidylcholine, and the smallest in the polyphosphoinositides (PPIs). Mock stimulation with serum-free medium caused a similar increase in PPI turnover, but little or no effect on turnover of other phospholipids. This effect could be accounted for by a stimulation of the turnover of cellular ATP pools increasing [32P]ATP specific radioactivity. Late G1 and S phases were associated with a decrease in the rate of synthesis of all phospholipids. Phosphatidic acid was the only phospholipid whose labelling fell below that in mock-stimulated cells during the period of the cell cycle. Stimulation of serum-starved cells that had been prelabelled with myo-[2-3H]inositol caused no change in the amounts of inositol trisphosphate, but both serum-stimulated and mock-stimulated cells exhibited similar small decreases in both inositol bisphosphate and inositol monophosphate, of approx. 30% after 30 s. When cells were serum-stimulated in the presence of 10 mM-Li+, there was no increase in the size of the total inositol phosphate pool. We conclude that mitogenic stimulation and cell-cycle traverse cause profound and complex effects on phospholipid turnover in CHO-K1 cells, but there is no evidence for a role of inositol lipid turnover in the proliferative response to serum in this cell line.  相似文献   
948.
949.
Effect of 3T3 plasma membranes on cells exposed to epidermal growth factor   总被引:3,自引:0,他引:3  
Epidermal growth factor (EGF) induced DNA synthesis in non-confluent, G0-arrested Swiss 3T3 fibroblasts is partially blocked by plasma membranes isolated from the EGF receptor deficient NR-6 Swiss 3T3 cell line. This inhibition could be due to either a steric block of the receptor by the membranes, a membrane induced down regulation of the EGF receptor, or a signal generated by membrane binding which is antagonistic towards the mitogenic signal generated by EGF. Binding measurements utilizing 125I-labeled EGF demonstrated that membranes do not block either the EGF induced down regulation of the receptor or alter the number of receptors on the surface. These results suggest that the membranes exert their inhibitory effect via generation of a signal which is antagonistic to the EGF induced mitogenic signal, with the result expressed as a reduced mitogenic response.  相似文献   
950.
Abstract. Soil resource availability may affect plant regeneration by resprouting in disturbed environments directly, by affecting plant growth rates, or indirectly by determining allocation to storage in the resprouting organs. Allocation to storage may be higher in stressful, low resource‐supply soils, but under such conditions plant growth rates may be lower. These factors could act in opposite directions leading to poorly known effects on resprouting. This paper analyses the role played by soil resources in the production and growth of resprouts after removal of above‐ground plant tissues in the Mediterranean shrub Erica australis. At 13 sites, differing in substrate, we cut the base of the stems of six plants of E. australis and allowed them to resprout and grow for two years. Soils were chemically analysed and plant water potential measured during the summer at all sites to characterize soil resource availability. We used stepwise regression analysis to determine the relationships between the resprouting response [mean site values of the number of resprouts (RN), maximum length (RML) and biomass (RB)] and soil nutrient content and plant water potential at each site. During the first two years of resprouting there were statistically significant differences among sites in the variables characterizing the resprouting response. RML was always different among sites and had little relationship with lignotuber area. RN was less different among sites and was always positively correlated with lignotuber area. RB was different among sites after the two years of growth. During the first months of resprouting, RN and RML were highly and positively related to the water status of the plant during summer. At later dates soil fertility variables came into play, explaining significant amounts of variance of the resprouting variables. Soil extractable cations content was the main variable accounting for RML and RB. Our results indicate that resprout growth of E. australis is positively affected by high water availability at the beginning of the resprouting response and negatively so by high soil extractable cation content at later periods. Some of these factors had previously shown to be related, with an opposite sign, to the development of a relatively larger lignotuber. Indeed, RML and RB measured in the second year of resprouting were significantly and negatively correlated with some indices of biomass allocation to the lignotuber at each site. This indicates that sites favouring allocation to the resprouting organ may not favour resprout growth.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号