首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2908篇
  免费   382篇
  国内免费   1篇
  3291篇
  2022年   17篇
  2021年   61篇
  2020年   30篇
  2019年   34篇
  2018年   25篇
  2017年   42篇
  2016年   56篇
  2015年   109篇
  2014年   88篇
  2013年   129篇
  2012年   169篇
  2011年   172篇
  2010年   93篇
  2009年   102篇
  2008年   130篇
  2007年   166篇
  2006年   138篇
  2005年   117篇
  2004年   117篇
  2003年   120篇
  2002年   94篇
  2001年   61篇
  2000年   75篇
  1999年   52篇
  1998年   43篇
  1997年   42篇
  1996年   37篇
  1995年   19篇
  1993年   21篇
  1992年   37篇
  1991年   44篇
  1990年   49篇
  1989年   38篇
  1988年   49篇
  1987年   45篇
  1986年   37篇
  1985年   48篇
  1984年   27篇
  1983年   32篇
  1982年   28篇
  1981年   22篇
  1979年   36篇
  1978年   35篇
  1977年   33篇
  1976年   26篇
  1975年   30篇
  1974年   27篇
  1973年   35篇
  1972年   23篇
  1969年   19篇
排序方式: 共有3291条查询结果,搜索用时 15 毫秒
51.
In plants, algae, and many bacteria, the heme and chlorophyll precursor, [delta]-aminolevulinic acid (ALA), is synthesized from glutamate in a reaction involving a glutamyl-tRNA intermediate and requiring ATP and NADPH as cofactors. In particulate-free extracts of algae and chloroplasts, ALA synthesis is inhibited by heme. Inclusion of 1.0 mM glutathione (GSH) in an enzyme and tRNA extract, derived from the green alga Chlorella vulgaris, lowered the concentration of heme required for 50% inhibition approximately 10-fold. The effect of GSH could not be duplicated with other reduced sulfhydryl compounds, including mercaptoethanol, dithiothreitol, and cysteine, or with imidazole or bovine serum albumin, which bind to heme and dissociate heme dimers. Absorption spectroscopy indicated that heme was fully reduced in incubation medium containing dithiothreitol, and addition of GSH did not alter the heme reduction state. Oxidized GSH was as effective in enhancing heme inhibition as the reduced form. Co-protoporphyrin IX inhibited ALA synthesis nearly as effectively as heme, and 1.0 mM GSH lowered the concentration required for 50% inhibition approximately 10-fold. Because GSH did not influence the reduction state of heme in the incubation medium, and because GSH could not be replaced by other reduced sulfhydryl compounds or ascorbate, the effect of GSH cannot be explained by action as a sulfhydryl protectant or heme reductant. Preincubation of enzyme extract with GSH, followed by rapid gel filtration, could not substitute for inclusion of GSH with heme during the reaction. The results suggest that GSH must specifically interact with the enzyme extract in the presence of the inhibitor to enhance the inhibition.  相似文献   
52.
This research focused on how adult female brown‐headed cowbirds, Molothrus ater, regulate social feedback on a group level to shape the development of male song. Specifically, females produce rapid wing movements in response to male song, termed ‘wing strokes,’ which have been shown to shape male song and predict song quality. These effects have been documented in captive dyads and triads, but not in more naturalistic flocks, where song development actually occurs. Here, we studied wing stroking in small seminatural flocks of differing female‐to‐male ratios. Despite differences in the number of females and their social selectivity, the same pattern of female feedback emerged in seven of eight flocks: One female produced the majority of wing strokes to male song, making her the primary wing stroker in her flock. Previous studies on large flocks have demonstrated females to facilitate male song improvisation and development if they exhibited higher social selectivity by approaching immature males less. Here, we found that primary wing strokers were indeed more socially selective than non‐primary wing strokers. This research is the first to document social stimulation being facilitated at the group level to ensure that more highly selective females deliver the most feedback.  相似文献   
53.
Hydrolysis of cellulose by Trichoderma viride cellulase reached a plateau after some 25 hr. If the initial enzyme-to-substrate ratio was low, resuspension of substrate in fresh enzyme or addition of enzyme resulted in further high rate hydrolysis. This did not occur if the initial ratio was high. Over 75% hydrolysis might be achieved in the former case, while less than 60% in the latter. A model postulating inactivation of adsorbed enzyme–substrate complex which blocked further hydrolysis was proposed, and it was found to fit the data well. The proposed model had five parameters, four of which could be checked by graphical methods, and all of which had physical meanings. The parameters were estimated by a nonlinear least-squares minimization FORTRAN computer program, using numerical integration and optimization of the parameters. The model was used to predict the resuspension data, powdered enzyme addition data, cellobiose addition data, and cellulose addition data; the deviations from the model are discussed. It was found that average values could be used for four out of the five parameters, while the fifth (initial enzyme concentration) did not correlate with independent measurements such as the filter paper activity or protein concentration.  相似文献   
54.
Non-somatic synaptic and axonal compartments of neurons are primary pathological targets in many neurodegenerative conditions, ranging from Alzheimer disease through to motor neuron disease. Axons and synapses are protected from degeneration by the slow Wallerian degeneration (Wld(s)) gene. Significantly the molecular mechanisms through which this spontaneous genetic mutation delays degeneration remain controversial, and the downstream protein targets of Wld(s) resident in non-somatic compartments remain unknown. In this study we used differential proteomics analysis to identify proteins whose expression levels were significantly altered in isolated synaptic preparations from the striatum of Wld(s) mice. Eight of the 16 proteins we identified as having modified expression levels in Wld(s) synapses are known regulators of mitochondrial stability and degeneration (including VDAC1, Aralar1, and mitofilin). Subsequent analyses demonstrated that other key mitochondrial proteins, not identified in our initial screen, are also modified in Wld(s) synapses. Of the non-mitochondrial proteins identified, several have been implicated in neurodegenerative diseases where synapses and axons are primary pathological targets (including DRP-2 and Rab GDP dissociation inhibitor beta). In addition, we show that downstream protein changes can be identified in pathways corresponding to both Ube4b (including UBE1) and Nmnat1 (including VDAC1 and Aralar1) components of the chimeric Wld(s) gene, suggesting that full-length Wld(s) protein is required to elicit maximal changes in synaptic proteins. We conclude that altered mitochondrial responses to degenerative stimuli are likely to play an important role in the neuroprotective Wld(s) phenotype and that targeting proteins identified in the current study may lead to novel therapies for the treatment of neurodegenerative diseases in humans.  相似文献   
55.
Taxa harboring high levels of standing variation may be more likely to adapt to rapid environmental shifts and experience ecological speciation. Here, we characterize geographic and host‐related differentiation for 10,241 single nucleotide polymorphisms in Rhagoletis pomonella fruit flies to infer whether standing genetic variation in adult eclosion time in the ancestral hawthorn (Crataegus spp.)‐infesting host race, as opposed to new mutations, contributed substantially to its recent shift to earlier fruiting apple (Malus domestica). Allele frequency differences associated with early vs. late eclosion time within each host race were significantly related to geographic genetic variation and host race differentiation across four sites, arrayed from north to south along a 430‐km transect, where the host races co‐occur in sympatry in the Midwest United States. Host fruiting phenology is clinal, with both apple and hawthorn trees fruiting earlier in the North and later in the South. Thus, we expected alleles associated with earlier eclosion to be at higher frequencies in northern populations. This pattern was observed in the hawthorn race across all four populations; however, allele frequency patterns in the apple race were more complex. Despite the generally earlier eclosion timing of apple flies and corresponding apple fruiting phenology, alleles on chromosomes 2 and 3 associated with earlier emergence were paradoxically at lower frequency in the apple than hawthorn host race across all four sympatric sites. However, loci on chromosome 1 did show higher frequencies of early eclosion‐associated alleles in the apple than hawthorn host race at the two southern sites, potentially accounting for their earlier eclosion phenotype. Thus, although extensive clinal genetic variation in the ancestral hawthorn race exists and contributed to the host shift to apple, further study is needed to resolve details of how this standing variation was selected to generate earlier eclosing apple fly populations in the North.  相似文献   
56.
R67 dihydrofolate reductase (R67 DHFR) is a plasmid‐encoded enzyme that confers resistance to the antibacterial drug trimethoprim. R67 DHFR is a tetramer with a single active site that is unusual as both cofactor and substrate are recognized by symmetry‐related residues. Such promiscuity has limited our previous efforts to differentiate ligand binding by NMR. To address this problem, we incorporated fluorine at positions 4, 5, 6, or 7 of the indole rings of tryptophans 38 and 45 and characterized the spectra to determine which probe was optimal for studying ligand binding. Two resonances were observed for all apo proteins. Unexpectedly, the W45 resonance appeared broad, and truncation of the disordered N‐termini resulted in the appearance of one sharp W45 resonance. These results are consistent with interaction of the N‐terminus with W45. Binding of the cofactor broadened W38 for all fluorine probes, whereas substrate, dihydrofolate, binding resulted in the appearance of three new resonances for 4‐ and 5‐fluoroindole labeled protein and severe line broadening for 6‐ and 7‐fluoroindole R67 DHFR. W45 became slightly broader upon ligand binding. With only two peaks in the 19F NMR spectra, our data were able to differentiate cofactor and substrate binding to the single, symmetric active site of R67 DHFR and yield binding affinities.  相似文献   
57.
1. Adenylate cyclase activity and patterns of insulin release in response to various concentrations of glucose were determined in islets of Langerhans isolated from starving, fed, or glucose-loaded rats. 2. Basal and glucagon-stimulated activities of adenylate cyclase were lower in islets from starved than from fed rats. The minimum glucose concentration required for stimulation of insulin secretion was higher, whereas the maximum secretory response to glucose was lower, in islets from starved than from fed rats. 3. Adenylate cyclase activity in islets of Langerhans obtained from fed rats loaded with glucose by intermittent intravenous or intraperitoneal injections over 5h was significantly higher than that seen in islets from normal fed rats. Islets obtained from glucose-loaded rats required a lower glucose concentration for stimulation of insulin secretion and attained a higher maximal response to glucose stimulation than those derived from fed rats. 4. Incubation in vitro of islets isolated from normal fed rats, for periods of 1 to 24h in the presence of high concentrations of glucose resulted in an activation of adenylate cyclase that occurred progressively from 2 to 7h and which was maintained during 24h of incubation. The increase of adenylate cyclase activity in isolated islets incubated for 4h in the presence of glucose was not prevented by addition of cycloheximide or actinomycin D. Galactose or 2-deoxyglucose was ineffective in increasing adenylate cyclase activity, and pyruvate (20mm) was less effective than glucose. 5. It is suggested that glucose or a glucose metabolite may exert long-term effects on islet cell adenylate cyclase.  相似文献   
58.
59.
To identify further Mendelian causes of intellectual disability (ID), we screened a cohort of 996 individuals with ID for variants in 565 known or candidate genes by using a targeted next-generation sequencing approach. Seven loss-of-function (LoF) mutations—four nonsense (c.1195A>T [p.Lys399], c.1333C>T [p.Arg445], c.1866C>G [p.Tyr622], and c.3001C>T [p.Arg1001]) and three frameshift (c.2177_2178del [p.Thr726Asnfs39], c.3771dup [p.Ser1258Glufs65], and c.3856del [p.Ser1286Leufs84])—were identified in SETD5, a gene predicted to encode a methyltransferase. All mutations were compatible with de novo dominant inheritance. The affected individuals had moderate to severe ID with additional variable features of brachycephaly; a prominent high forehead with synophrys or striking full and broad eyebrows; a long, thin, and tubular nose; long, narrow upslanting palpebral fissures; and large, fleshy low-set ears. Skeletal anomalies, including significant leg-length discrepancy, were a frequent finding in two individuals. Congenital heart defects, inguinal hernia, or hypospadias were also reported. Behavioral problems, including obsessive-compulsive disorder, hand flapping with ritualized behavior, and autism, were prominent features. SETD5 lies within the critical interval for 3p25 microdeletion syndrome. The individuals with SETD5 mutations showed phenotypic similarity to those previously reported with a deletion in 3p25, and thus loss of SETD5 might be sufficient to account for many of the clinical features observed in this condition. Our findings add to the growing evidence that mutations in genes encoding methyltransferases regulating histone modification are important causes of ID. This analysis provides sufficient evidence that rare de novo LoF mutations in SETD5 are a relatively frequent (0.7%) cause of ID.  相似文献   
60.
In Escherichia coli, there are multiple paralogous copies of the enzyme API [A5P (D-arabinose 5-phosphate) isomerase], which catalyses the conversion of the pentose pathway intermediate Ru5P (D-ribulose 5-phosphate) into A5P. A5P is a precursor of Kdo (3-deoxy-D-manno-octulosonate), an integral carbohydrate component of various glycolipids coating the surface of the OM (outer membrane) of Gram-negative bacteria, including LPS (lipopolysaccharide) and many group 2 K-antigen capsules. The K-antigen-specific API KpsF has been cloned from the uropathogenic E. coli strain CFT073 and its biochemical properties characterized. Purified recombinant KpsF [K-API (K-antigen API)] is tetrameric and has optimal activity at pH 7.8. The enzyme is specific for A5P and Ru5P, with K(m) (app) values of 0.57 mM for A5P and 0.3 mM for Ru5P. The apparent kcat in the A5P to Ru5P direction is 15 and 19 s(-1) in the Ru5P to A5P direction. While most of the properties are quite similar to its LPS API counterpart KdsD, the catalytic constant is nearly 10-fold lower. K-API is now the second Kdo biosynthetic related gene that has been characterized from the kps group 2 capsule cluster.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号