首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   112篇
  免费   12篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   1篇
  2018年   4篇
  2017年   5篇
  2016年   10篇
  2015年   9篇
  2014年   6篇
  2013年   5篇
  2012年   7篇
  2011年   14篇
  2010年   3篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   4篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   5篇
  1999年   1篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1987年   1篇
  1986年   1篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1976年   4篇
  1974年   1篇
  1973年   1篇
  1966年   1篇
排序方式: 共有124条查询结果,搜索用时 15 毫秒
21.
The synthesis of steroid hormones is critical to human physiology and improper regulation of either the synthesis of these key molecules or activation of the associated receptors can lead to disease states. This has led to intense interest in developing compounds capable of modulating the synthesis of steroid hormones. Compounds capable of inhibiting Cyp19 (Aromatase), a key enzyme in the synthesis of estrogens, have been successfully employed as breast cancer therapies, while inhibitors of Cyp17 (17α-hydroxylase-17,20-lyase), a key enzyme in the synthesis of glucocorticoids, mineralocorticoids and steroidal sex hormones, are a key component of prostate cancer therapy. Inhibition of CYP17 has also been suggested as a possible target for the treatment of Cushing Syndrome and Metabolic Syndrome. We have identified two novel series of stilbene based CYP17 inhibitors and demonstrated that exemplary compounds in these series have pharmacokinetic properties consistent with orally delivered drugs. These findings suggest that compounds in these classes may be useful for the treatment of diseases and conditions associated with improper regulation of glucocorticoids synthesis and glucocorticoids receptor activation.  相似文献   
22.
23.

Background

Edible insects are an important source of food to many African populations. The longhorn grasshopper, Ruspolia differens (Serville 1838), commonly known as senene in Tanzania is one of the most appreciated edible insects by societies around Lake Victoria crescent. Senene is primarily an essential treat for the tribes around the lake, e.g., the Haya of Tanzania, Luo of Kenya and Baganda of Uganda. Despite its importance as a food item and appreciation as a delicacy, there are few studies dealing with culture, beliefs and indigenous technology in connection with the senene. The main objective of this study was to survey indigenous technologies, processing methods and traditions in relation to senene consumption among the Haya tribe in Kagera region of Tanzania.

Methods

Our ethnographic study was conducted through semi-structured interviews. A total of 51 locals, 26 females and 25 males aged 21 to 60 years were interviewed (with 3 female and 7 male key informants among them). Questions focused on cultures, beliefs and traditions towards senene consumption. Processing, preservation and shelf-life as well as nutritional knowledge were also investigated.

Results

Harvesting for household consumption was mainly done through wild collection. Traditionally made traps were mostly used for commercial harvesting. Deep frying was the most preferred processing method while smoking was the most preferred preservation method, with shelf-life of up to 12 months. Interesting traditions and taboos associated with senene consumption were identified, with men monopolising the insects as food by declaring the insects taboo for women and children. Deep fried senene in locally packed containers were mostly sold by street vendors, but also available from a variety of stores and supermarkets.

Conclusion

Beyond being just an important traditional delicacy, senene is becoming increasingly popular, providing opportunity for local businesses. Indigenous technologies for harvesting, processing and preserving senene exist, but must be improved to meet food processing standards, thereby promoting commercialization. This carries economic potential essential for improving incomes and livelihoods of women and smallholder farmers, improving household level food security.
  相似文献   
24.
F420H2:NADP+ Oxidoreductase (Fno) catalyzes the reversible reduction of NADP+ to NADPH by transferring a hydride from the reduced F420 cofactor. Here, we have employed binding studies, steady-state and pre steady-state kinetic methods upon wtFno and isoleucine 135 (I135) Fno variants in order to study the effects of side chain length on the donor-acceptor distance between NADP+ and the F420 precursor, FO. The conserved I135 residue of Fno was converted to a valine, alanine and glycine, thereby shortening the side chain length. The steady-state kinetic analysis of wtFno and the variants showed classic Michaelis-Menten kinetics with varying FO concentrations. The data revealed a decreased kcat as side chain length decreased, with varying FO concentrations. The steady-state plots revealed non-Michaelis-Menten kinetic behavior when NADPH was varied. The double reciprocal plot of the varying NADPH concentrations displays a downward concave shape, while the NADPH binding curves gave Hill coefficients of less than 1. These data suggest that negative cooperativity occurs between the two identical monomers. The pre steady-state Abs420 versus time trace revealed biphasic kinetics, with a fast phase (hydride transfer) and a slow phase. The fast phase displayed an increased rate constant as side chain length decreased. The rate constant for the second phase, remained ~2 s?1 for each variant. Our data suggest that I135 plays a key role in sustaining the donor-acceptor distance between the two cofactors, thereby regulating the rate at which the hydride is transferred from FOH2 to NADP+. Therefore, Fno is a dynamic enzyme that regulates NADPH production.  相似文献   
25.
26.
27.
Most commercially important rootstocks for peach [Prunus persica (L.) Batsch] had been selected for resistance to one or more of the root-knot nematode (RKN) species: Meloidogyne incognita, M. arenaria, and M. javanica. The peach root-knot nematode, M. floridensis (MF), is a relatively newly discovered threat to peach and is not controlled by resistance genes in “Nemared,” “Nemaguard,” and “Okinawa.” The “Flordaguard” peach seedling rootstock, conventionally bred to provide resistance to MF, has solely been used for low-chill peach production in Florida for over 20 years and has already shown signs of resistance breakdown. A source of high resistance to the pathogenic MF isolate (“MFGnv14”) was identified from wild peach Prunus kansuensis Rehder (Kansu peach), thereby suggesting the potential for broadening spectrum and increasing durability of resistance in peach rootstocks through interspecific hybridization with P. kansuensis. Using 12 F2 and BC1F1 populations derived from crosses between Okinawa or Flordaguard peach and P. kansuensis populations, we examined the genetic control for MF resistance by identifying associated microsatellite markers and determining genomic location of the resistance locus. One microsatellite marker (UDP98-025) showed strong and consistent association with resistance based on root-galling index. The resistance locus was mapped on the subtelomeric region of linkage group 2, co-localizing with other previously reported RKN resistance genes in Prunus. Segregation of gall-index-based resistance observed in F2 and BC1F1 populations is compatible with the involvement of a multiallelic locus wherein a dominant (Mf1) or recessive (mf3) resistance allele is inherited from P. kansuensis, and susceptibility alleles (mf2) from peach.  相似文献   
28.
29.
Bacterial capsular polysaccharides (CPS) are produced by a multi-protein membrane complex, in which a particular type of tyrosine-autokinases named BY-kinases, regulate their polymerization and export. However, our understanding of the role of BY-kinases in these processes remains incomplete. In the human pathogen Streptococcus pneumoniae, the BY-kinase CpsD localizes at the division site and participates in the proper assembly of the capsule. In this study, we show that the cytoplasmic C-terminal end of the transmembrane protein CpsC is required for CpsD autophosphorylation and localization at mid-cell. Importantly, we demonstrate that the CpsC/CpsD complex captures the polysaccharide polymerase CpsH at the division site. Together with the finding that capsule is not produced at the division site in cpsD and cpsC mutants, these data show that CPS production occurs exclusively at mid-cell and is tightly dependent on CpsD interaction with CpsC. Next, we have analyzed the impact of CpsD phosphorylation on CPS production. We show that dephosphorylation of CpsD induces defective capsule production at the septum together with aberrant cell elongation and nucleoid defects. We observe that the cell division protein FtsZ assembles and localizes properly although cell constriction is impaired. DAPI staining together with localization of the histone-like protein HlpA further show that chromosome replication and/or segregation is defective suggesting that CpsD autophosphorylation interferes with these processes thus resulting in cell constriction defects and cell elongation. We show that CpsD shares structural homology with ParA-like ATPases and that it interacts with the chromosome partitioning protein ParB. Total internal reflection fluorescence microscopy imaging demonstrates that CpsD phosphorylation modulates the mobility of ParB. These data support a model in which phosphorylation of CpsD acts as a signaling system coordinating CPS synthesis with chromosome segregation to ensure that daughter cells are properly wrapped in CPS.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号