首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   441篇
  免费   39篇
  国内免费   1篇
  481篇
  2021年   5篇
  2020年   5篇
  2019年   4篇
  2018年   9篇
  2017年   9篇
  2016年   9篇
  2015年   26篇
  2014年   16篇
  2013年   21篇
  2012年   31篇
  2011年   26篇
  2010年   15篇
  2009年   11篇
  2008年   18篇
  2007年   19篇
  2006年   20篇
  2005年   20篇
  2004年   11篇
  2003年   12篇
  2002年   13篇
  2001年   12篇
  2000年   12篇
  1999年   9篇
  1998年   9篇
  1997年   3篇
  1996年   4篇
  1995年   4篇
  1994年   6篇
  1993年   2篇
  1992年   9篇
  1991年   8篇
  1990年   11篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   7篇
  1985年   11篇
  1983年   3篇
  1982年   3篇
  1981年   2篇
  1979年   8篇
  1978年   2篇
  1977年   5篇
  1974年   4篇
  1973年   3篇
  1972年   5篇
  1971年   5篇
  1970年   2篇
  1969年   4篇
  1967年   3篇
排序方式: 共有481条查询结果,搜索用时 15 毫秒
41.
Mutations in the MEN1 gene correlate with multiple endocrine neoplasia I (MEN1). Gastrinomas are the most malignant of the neuroendocrine tumors associated with MEN1. Because menin and JunD proteins interact, we examined whether JunD binds to and regulates the gastrin gene promoter. Both menin and JunD are ubiquitous nuclear proteins that we showed colocalize in the gastrin-expressing G cells of the mouse antrum. Transfection with a JunD expression vector alone induced endogenous gastrin mRNA in AGS human gastric cells, and the induction was blocked by menin overexpression. We mapped repression by menin to both a nonconsensus AP-1 site and proximal GC-rich elements within the human gastrin promoter. Chromatin immunoprecipitation assays, EMSAs, and DNA affinity precipitation assays documented that JunD and Sp1 proteins bind these two elements and are both targets for menin regulation. Consistent with menin forming a complex with histone deacetylases, we found that repression of gastrin gene expression by menin was reversed by trichostatin A. In conclusion, proximal DNA elements within the human gastrin gene promoter mediate interactions between JunD, which induces gastrin gene expression and menin, which suppresses JunD-mediated activation.  相似文献   
42.
Nanopore sensors have attracted considerable interest for high-throughput sensing of individual nucleic acids and proteins without the need for chemical labels or complex optics. A prevailing problem in nanopore applications is that the transport kinetics of single biomolecules are often faster than the measurement time resolution. Methods to slow down biomolecular transport can be troublesome and are at odds with the natural goal of high-throughput sensing. Here we introduce a low-noise measurement platform that integrates a complementary metal-oxide semiconductor (CMOS) preamplifier with solid-state nanopores in thin silicon nitride membranes. With this platform we achieved a signal-to-noise ratio exceeding five at a bandwidth of 1 MHz, which to our knowledge is the highest bandwidth nanopore recording to date. We demonstrate transient signals as brief as 1 μs from short DNA molecules as well as current signatures during molecular passage events that shed light on submolecular DNA configurations in small nanopores.  相似文献   
43.
Photosynthetic organisms are responsible for converting sunlight into organic matter, and they are therefore seen as a resource for the renewable fuel industry. Ethanol and esterified fatty acids (biodiesel) are the most common fuel products derived from these photosynthetic organisms. The potential of algae as producers of biodiesel precursor (or triacylglycerols (TAGs)) has yet to be realized because of the limited knowledge of the underlying biochemistry, cell biology and genetics. Well-characterized pathways from fungi and land plants have been used to identify algal homologs of key enzymes in TAG synthesis, including diacylglcyerol acyltransferases, phospholipid diacylglycerol acyltransferase and phosphatidate phosphatases. Many laboratories have adopted Chlamydomonas reinhardtii as a reference organism for discovery of algal-specific adaptations of TAG metabolism. Stressed Chlamydomonas cells, grown either photoautotrophically or photoheterotrophically, accumulate TAG in plastid and cytoplasmic lipid bodies, reaching 46-65% of dry weight in starch accumulation (sta) mutants. State of the art genomic technologies including expression profiling and proteomics have identified new proteins, including key components of lipid droplets, candidate regulators and lipid/TAG degrading activities. By analogy with crop plants, it is expected that advances in algal breeding and genome engineering may facilitate realizing the potential in algae.  相似文献   
44.
This study investigated the role of quercitol in osmotic adjustment in field-grown Eucalyptus astringens Maiden subject to seasonal drought stress over the course of 1 year. The trees grew in a native woodland and a farm plantation in the semi-arid wheatbelt region of south Western Australia. Plantation trees allocated relatively more biomass to leaves than woodland trees, but they suffered greater drought stress over summer, as indicated by lower water potentials, CO2 assimilation rates and stomatal conductances. In contrast, woodland trees had relatively fewer leaves and suffered less drought stress. Plantation trees under drought stress engaged in osmotic adjustment, but woodland trees did not. Quercitol made a significant contribution to osmotic adjustment in drought-stressed trees (25% of total solutes), and substantially more quercitol was measured in the leaves of plantation trees (5% dry matter) than in the leaves of woodland trees (2% dry matter). We found no evidence that quercitol was used as a carbon storage compound while starch reserves were depleted under drought stress. Differences in stomatal conductance, biomass allocation and quercitol production clearly indicate that E. astringens is both morphologically and physiologically 'plastic' in response to growth environment, and that osmotic adjustment is only one part of a complex strategy employed by this species to tolerate drought.  相似文献   
45.
The hemolysis of red blood cells (RBC) induced by Cu(II) is modified by ceruloplasmin (Cp) and albumin. The time course of hemolysis for rabbit RBC by Cu(II) consisted of two parts, an induction period followed by a catastrophic lysis period. The induction period decreased and the lysis rate increased with increasing Cu(II) concentration. Cp or albumin, modified Cu(II) induced hemolysis, by increasing the duration of the induction period and decreasing the overall rate of hemolysis of RBC. The catastrophic lysis period coincided with a sharp increase in the formation of metHb within the cell and in a rapid uptake of Cu(II). The presence of Cp led to an increase in the induction period prior to the rapid increase in metHb formation and in Cu(II) uptake. Porcine Cp was prepared with either two or three nonprosthetic copper binding sites (sites where Cu(II) is easily removed by passing over Chelex-100). Cp with three nonprosthetic binding sites gave more protection than Cp with two. Likewise, albumin can be prepared with three and five nonprosthetic copper binding sites. The albumin with five sites gave more protection than the albumin with three sites.  相似文献   
46.
Nicastrin is a component of the gamma-secretase complex that has been shown to adhere to presenilin-1 (PS1), Notch, and APP. Here we demonstrate that Nicastrin-deficient mice showed a phenotype that is indistinguishable from PS1/PS2 double knock-out mice, whereas heterozygotes were healthy and viable. Fibroblasts derived from Nicastrin-deficient embryos were unable to generate amyloid beta-peptide and failed to release the intracellular domain of APP- or Notch1-Gal4-VP16 fusion proteins. Additionally, C- and N-terminal fragments of PS1 and the C-terminal fragments of PS2 were not detectable in Nicastrin-null fibroblasts, whereas full-length PS1 accumulated in null fibroblasts, indicating that Nicastrin is required for the endoproteolytic processing of presenilins. Interestingly, cells derived from Nicastrin heterozygotes produced relatively higher levels of amyloid beta-peptide whether the source was endogenous mouse or transfected human APP. These data demonstrate that Nicastrin is essential for the gamma-secretase cleavage of APP and Notch in mammalian cells and that Nicastrin has both positive and negative functions in the regulation of gamma-secretase activity.  相似文献   
47.
Epithelial outgrowths from hamster cheek pouch explants were cultured for varying periods of time up to 22 days. Growth of the epithelial sheets was monitored, employing colcemid for demonstrating mitotic activity and tritiated thymidine for DNA synthesis. Mitoses and thymidine uptake were observed among epithelial outgrowths at a considerable distance form the original explant. The epithelial nature of the growing cell sheets was confirmed, employing electron microscopic techniques. The cells exhibited the presence of tonofilaments, desmosomes, ribosomes, Golgi, mitochondria, and rough endoplasmic reticulum. The cultured explants were treated with cyclic nucleotides in order to investigate their modulatory effects on epithelial cell differentiation. Dibutyryl cAMP induced marked mitotic inhibition (46.3%) in our assay, which was increased to 57% with the addition of theophylline. Dibutyryl cGMP showed only a mild (5%) stimulatory effect on mitotic activity. Dibutyryl cAMP enhanced keratinization in the epithelial cell outgrowths with the biogenesis of keratohyalin granules, whereas dibutyryl cGMP did not produce any observable alterations.  相似文献   
48.
The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors) against factor VIII (FVIII). The current method for eradicating inhibitors, termed immune tolerance induction (ITI), is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8) gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.  相似文献   
49.
In this study, we have addressed the capacity of the green alga Chlamydomonas reinhardtii to produce metal-binding peptides in response to stress induced by the heavy metals Cd2+, Hg2+, and Ag+. Cells cultured in the presence of sublethal concentrations of Cd2+ synthesized and accumulated oligopeptides consisting solely of glutamic acid, cysteine, and glycine in an average ratio of 3:3:1. Cadmium-induced peptides were isolated in their native form as higher molecular weight peptide-metal complexes with an apparent molecular weight of approximately 6.5 × 103. The isolated complex bound cadmium (as evidenced by absorption spectroscopy) and sequestered (with a stoichiometry of 0.7 moles of cadmium per mole of cysteine) up to 70% of the total cadmium found in extracts of cadmium-treated cells. In Hg2+-treated cells, the principal thiol-containing compound induced by Hg2+ ions was glutathione. It is possible that glutathione functions in plant cells (as it does in animal cells) to detoxify heavy metals. Cells treated with Ag+ ions also synthesized a sulfur-containing component with a charge to mass ratio similar to Cd2+-induced peptides. But, in contrast to the results obtained using Cd2+ as an inducer, these molecules did not accumulate to significant levels in Ag+-treated cells. The presence of physiological concentrations of Cu2+ in the growth medium blocked the synthesis of the Ag+-inducible component(s) and rendered cells resistant to the toxic effects of Ag+, suggesting competition between Cu2+ and Ag+ ions, possibly at the level of metal uptake.  相似文献   
50.
Secretory vesicles are neutrophil intracellular storage granules formed by endocytosis. Understanding the functional consequences of secretory vesicle exocytosis requires knowledge of their membrane proteins. The current study was designed to use proteomic technologies to develop a more complete catalog of secretory vesicle membrane proteins and to compare the proteomes of secretory vesicle and plasma membranes. A total of 1118 proteins were identified, 573 (51%) were present only in plasma membrane-enriched fractions, 418 (37%) only in secretory vesicle-enriched membrane fractions, and 127 (11%) in both fractions. Gene Ontology categorized 373 of these proteins as integral membrane proteins. Proteins typically associated with other intracellular organelles, including nuclei, mitochondria, and ribosomes, were identified in both membrane fractions. Ingenuity Pathway Knowledge Base analysis determined that the majority of canonical and functional pathways were significantly associated with proteins from both plasma membrane-enriched and secretory vesicle-enriched fractions. There were, however, some canonical signaling pathways that involved proteins only from plasma membranes or secretory vesicles. In conclusion, a number of proteins were identified that may elucidate mechanisms and functional consequences of secretory vesicle exocytosis. The small number of common proteins suggests that the hypothesis that secretory vesicles are formed from plasma membranes by endocytosis requires more critical evaluation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号