首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   488篇
  免费   44篇
  国内免费   3篇
  2021年   5篇
  2019年   2篇
  2018年   7篇
  2017年   6篇
  2016年   8篇
  2015年   29篇
  2014年   15篇
  2013年   27篇
  2012年   36篇
  2011年   24篇
  2010年   27篇
  2009年   19篇
  2008年   22篇
  2007年   28篇
  2006年   24篇
  2005年   22篇
  2004年   13篇
  2003年   16篇
  2002年   13篇
  2001年   14篇
  2000年   10篇
  1999年   8篇
  1998年   12篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   3篇
  1992年   9篇
  1991年   8篇
  1990年   11篇
  1989年   4篇
  1988年   5篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1983年   3篇
  1981年   2篇
  1980年   2篇
  1979年   10篇
  1978年   2篇
  1977年   7篇
  1974年   3篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   2篇
  1969年   4篇
  1968年   2篇
  1967年   3篇
排序方式: 共有535条查询结果,搜索用时 46 毫秒
81.
Nuclei of the dinoflagellate Crypthecodinium cohnii strain Whd were isolated and nuclear proteins were extracted in three fractions, corresponding to the increasing affinity of these proteins to genomic DNA. One fraction contained two major bands (48- and 46-kDa) and antibodies specific to this fraction revealed two major bands by Western blot on nuclear extracts, corresponding to the 46- and 48-kDa bands. The 48-kDa protein was detected in G1 phase but not in M phase cells. An expression cDNA library of C. cohnii was screened with these antibodies, and two different open reading frames were isolated. Dinoflagellate nuclear associated protein (Dinap1), one of these coding sequences, was produced in E. coli and appeared to correspond to the 48-kDa nuclear protein. No homologue of this sequence was found in the data bases, but two regions were identified, one including two putative zinc finger repeats, and one coding for two potential W/W domains. The second coding sequence showed a low similarity to non-specific sterol carrier proteins. Immunocytolocalization with specific polyclonal antibodies to recombinant Dinap1 showed that the nucleus was immunoreactive only during the G1 phase: the nucleoplasm was immunostained, while chromosome cores and nuclear envelopes were negative.  相似文献   
82.
In this consensus paper resulting from a meeting that involved representatives from more than 20 European partners, we recommend the foundation of an expert group (European Steering Committee) to assess the potential benefits and draw-backs of genome editing (off-targets, mosaicisms, etc.), and to design risk matrices and scenarios for a responsible use of this promising technology. In addition, this European steering committee will contribute in promoting an open debate on societal aspects prior to a translation into national and international legislation.  相似文献   
83.

Background  

Simple Sequence Repeat (SSR) or microsatellite markers are valuable for genetic research. Experimental methods to develop SSR markers are laborious, time consuming and expensive. In silico approaches have become a practicable and relatively inexpensive alternative during the last decade, although testing putative SSR markers still is time consuming and expensive. In many species only a relatively small percentage of SSR markers turn out to be polymorphic. This is particularly true for markers derived from expressed sequence tags (ESTs). In EST databases a large redundancy of sequences is present, which may contain information on length-polymorphisms in the SSR they contain, and whether they have been derived from heterozygotes or from different genotypes. Up to now, although a number of programs have been developed to identify SSRs in EST sequences, no software can detect putatively polymorphic SSRs.  相似文献   
84.
When the abundance of the FOX1 gene product is reduced, Chlamydomonas cells grow poorly in iron-deficient medium, but not in iron-replete medium, suggesting that FOX1-dependent iron uptake is a high-affinity pathway. Alternative pathways for iron assimilation, such as those involving ZIP family transporters IRT1 and IRT2, may be operational.  相似文献   
85.
Genetic variation on the non-recombining portion of the Y chromosome contains information about the ancestry of male lineages. Because of their low rate of mutation, single nucleotide polymorphisms (SNPs) are the markers of choice for unambiguously classifying Y chromosomes into related sets of lineages known as haplogroups, which tend to show geographic structure in many parts of the world. However, performing the large number of SNP genotyping tests needed to properly infer haplogroup status is expensive and time consuming. A novel alternative for assigning a sampled Y chromosome to a haplogroup is presented here. We show that by applying modern machine-learning algorithms we can infer with high accuracy the proper Y chromosome haplogroup of a sample by scoring a relatively small number of Y-linked short tandem repeats (STRs). Learning is based on a diverse ground-truth data set comprising pairs of SNP test results (haplogroup) and corresponding STR scores. We apply several independent machine-learning methods in tandem to learn formal classification functions. The result is an integrated high-throughput analysis system that automatically classifies large numbers of samples into haplogroups in a cost-effective and accurate manner.  相似文献   
86.
87.
88.
A model for integrative study of human gastric acid secretion.   总被引:2,自引:0,他引:2  
We have developed a unique virtual human model of gastric acid secretion and its regulation in which food provides a driving force. Food stimulus triggers neural activity in central and enteric nervous systems and G cells to release gastrin, a critical stimulatory hormone. Gastrin stimulates enterochromaffin-like cells to release histamine, which, together with acetylcholine, stimulates acid secretion from parietal cells. Secretion of somatostatin from antral and corpus D cells comprises a negative-feedback loop. We demonstrate that although acid levels are most sensitive to food and nervous system inputs, somatostatin-associated interactions are also important in governing acidity. The importance of gastrin in acid secretion is greatest at the level of transport between the antral and corpus regions. Our model can be applied to study conditions that are not yet experimentally reproducible. For example, we are able to preferentially deplete antral or corpus somatostatin. Depletion of antral somatostatin exhibits a more significant elevation of acid release than depletion of corpus somatostatin. This increase in acid release is likely due to elevated gastrin levels. Prolonged hypergastrinemia has significant effects in the long term (5 days) by promoting enterochromaffin-like cell overgrowth. Our results may be useful in the design of therapeutic strategies for acid secretory dysfunctions such as hyper- and hypochlorhydria.  相似文献   
89.
Abstract 1. The biology of most invasive species in their native geographical areas remains largely unknown. Such studies are, however, crucial in shedding light on the ecological and evolutionary processes underlying biological invasions. 2. The present study focuses on the little fire ant Wasmannia auropunctata, a species native to Central and South America that has been widely introduced and which has become invasive throughout the tropics. We characterise and compare several ecological traits of native populations in French Guiana with those in one of its introduced ranges, New Caledonia. 3. We found ecologically heterogeneous populations of W. auropunctata coexisting in the species’ native geographical area. First, we found populations restricted to naturally perturbed areas (particularly floodplains) within the primary forest, and absent from the surrounding forest areas. These populations were characterised by low nest and worker densities. Second, we found dominant populations in recent anthropogenic areas (e.g. secondary forest or forest edge along road) characterised by high nest and worker densities, and associated with low ant species richness. The local dominance of W. auropunctata in such areas can be due to the displacement of other species (cause) or the filling‐up of empty habitats unsuitable to other ants (effect). With respect to their demographic features and ant species richness, the populations of native anthropogenic habitats were to a large extent similar to the invasive populations introduced into remote areas. 4. The results point to the need for greater research efforts to better understand the ecological and demographic features of invasive species within their native ranges.  相似文献   
90.
Ferredoxin (Fd) is the major iron-containing protein in photosynthetic organisms and is central to reductive metabolism in the chloroplast. The Chlamydomonas reinhardtii genome encodes six plant type [Fe2S2] ferredoxins, products of PETF, FDX2–FDX6. We performed the functional analysis of these ferredoxins by localizing Fd, Fdx2, Fdx3, and Fdx6 to the chloroplast by using isoform-specific antibodies and monitoring the pattern of gene expression by iron and copper nutrition, nitrogen source, and hydrogen peroxide stress. In addition, we also measured the midpoint redox potentials of Fd and Fdx2 and determined the kinetic parameters of their reactions with several ferredoxin-interacting proteins, namely nitrite reductase, Fd:NADP+ oxidoreductase, and Fd:thioredoxin reductase. We found that each of the FDX genes is differently regulated in response to changes in nutrient supply. Moreover, we show that Fdx2 (Em = −321 mV), whose expression is regulated by nitrate, is a more efficient electron donor to nitrite reductase relative to Fd. Overall, the results suggest that each ferredoxin isoform has substrate specificity and that the presence of multiple ferredoxin isoforms allows for the allocation of reducing power to specific metabolic pathways in the chloroplast under various growth conditions.Ferredoxins are small (∼11,000-kDa), soluble, iron-sulfur cluster-containing proteins with strongly negative redox potentials (−350 to −450 mV) that function as electron donors at reductive steps in various metabolic pathways (13). In photosynthetic organisms, the well studied ferredoxin (Fd4; the product of the PETF gene) is the most abundant iron-containing protein in the chloroplast and is central to the distribution of photosynthetically derived reductive power (4).The most well known Fd-dependent reaction is the transfer of electrons from photosystem I (PSI) to NADPH, catalyzed by Fd:NADP+ oxidoreductase (FNR). The NADPH produced by this reaction donates electrons to the only reductant-requiring step in the Calvin cycle and other steps in anabolic pathways that require NADPH as reductant. In addition, reduced Fd directly donates electrons to other metabolic pathways by interacting with various enzymes in the chloroplast. This includes Fd:thioredoxin reductase (FTR), which converts a light-driven electron signal into a thiol signal that is transmitted to thioredoxins (TRXs) present in the plastid as different types (or different isoforms). Once reduced, TRXs interact with specific disulfide bonds on target enzymes, modulating their activities (5). Other Fd targets include hydrogenase, which is responsible for hydrogen production in anaerobic conditions in green algae; glutamine-oxoglutarate amidotransferase in amino acid synthesis; nitrite and sulfite reductases in nitrate and sulfate assimilation, respectively; stearoyl-ACP Δ9-desaturase in fatty acid desaturation; and phycocyanobilin:Fd oxidoreductase in synthesis of phytochromobilin (6). Fd also functions in non-photosynthetic cells. Here, FNR catalyzes the reduction of Fd by NADPH produced in the oxidative pentose phosphate pathway, enabling Fd-dependent metabolism to occur in the dark (7, 8).The single-celled green alga, Chlamydomonas reinhardtii is an excellent reference organism for studying both metabolic adaptation to nutrient stress and photosynthesis (913). The Chlamydomonas genome encodes six highly related plant type ferredoxin genes (9). Until recently, only the major photosynthetic ferredoxin, Fd (encoded by PETF), which mediates electron transfer between PSI and FNR, had been characterized in detail (14).Many land plants are known to have multiple ferredoxins. Typically, they are differently localized on the basis of their function. Photosynthetic ferredoxins reduce NADP+ at a faster rate and are localized to the leaves, whereas non-photosynthetic ferredoxins are more efficiently reduced by NADPH and are localized to the roots. Arabidopsis thaliana has a total of six ferredoxin isoforms (15). Of these, two are photosynthetic and localized in the leaves. The most abundant, AtFd2, is involved in linear electron flow, and the less abundant (5% of the ferredoxin pool), AtFd1, has been implicated in cyclic electron flow (16). There is one non-photosynthetic ferredoxin located in the roots, AtFd3, which is nitrate-inducible. This protein has higher electron transfer activity with sulfite reductase in in vitro assays compared with other Arabidopsis ferredoxin isoforms, suggesting in vivo function of AtFd3 in nitrate and sulfate assimilation (15, 17). In addition, there is one evolutionarily distant ferredoxin, AtFd4, of unknown function with a more positive redox potential present in the leaves and two other proteins which are “ferredoxin-like” and uncharacterized (15). Zea mays has four ferredoxin isoforms, two photosynthetic and two non-photosynthetic (18). One of the non-photosynthetic isoforms is specifically induced by nitrite, suggestive of a role in nitrate metabolism (19). A cyanobacterium, Anabaena 7120, has two ferredoxins, vegetative and heterocyst type (by analogy to leaf and root types, respectively). The heterocyst type is present only in cells that have differentiated into nitrogen-fixing cells, indicating that this form may serve to transfer electrons to nitrogenase (20).We hypothesize that the presence of as many as six ferredoxin isoforms in a single-celled organism like C. reinhardtii allows for the differential regulation of each isoform and therefore the prioritization of reducing power toward certain metabolic pathways under changing environmental conditions. To test this hypothesis, expression of the genes (PETF and FDX2–FDX6) encoding the six ferredoxin isoforms in Chlamydomonas reinhardtii was monitored under various conditions in which well characterized ferredoxin-dependent enzymes are known to be expressed. In addition, we also analyzed the interaction of Fd and Fdx2 with several ferredoxin-interacting proteins, such as NiR, FNR, and FTR, and determined the kinetic parameters of the corresponding reactions.We found that each of the FDX genes is indeed differently regulated in response to changes in nutrient supply. In the case of FDX2 whose product is most similar to classical Fd, we suggest that it has specificity for nitrite reductase based on its pattern of expression and activity with nitrite reductase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号