首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   372篇
  免费   37篇
  409篇
  2023年   2篇
  2021年   4篇
  2020年   2篇
  2019年   2篇
  2018年   6篇
  2017年   4篇
  2016年   6篇
  2015年   23篇
  2014年   10篇
  2013年   20篇
  2012年   30篇
  2011年   18篇
  2010年   14篇
  2009年   8篇
  2008年   14篇
  2007年   17篇
  2006年   20篇
  2005年   18篇
  2004年   10篇
  2003年   12篇
  2002年   12篇
  2001年   9篇
  2000年   10篇
  1999年   6篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   6篇
  1993年   2篇
  1992年   9篇
  1991年   8篇
  1990年   11篇
  1989年   4篇
  1988年   4篇
  1987年   8篇
  1986年   6篇
  1985年   8篇
  1983年   3篇
  1981年   2篇
  1979年   8篇
  1978年   2篇
  1977年   5篇
  1974年   3篇
  1973年   3篇
  1972年   5篇
  1971年   4篇
  1970年   2篇
  1969年   4篇
  1967年   3篇
排序方式: 共有409条查询结果,搜索用时 15 毫秒
31.
Serum amyloid P component (SAP) is known as a prototypic acute phase reactant in the mouse and the protein that binds to dying cells securing their swift disposal by phagocytes. Treatment of solid tumors by photodynamic therapy (PDT) triggers SAP production in the liver of host mice, its release in the circulation and accumulation in PDT-targeted lesions. In the present study, mouse Lewis lung carcinoma (LLC) cells treated in vitro by PDT are shown to upregulate their gene encoding SAP. This effect was manifested following PDT treatment mediated by various types of photosensitizers (Photofrin, BPD, mTHPC, ALA). Generated SAP protein was not detected in tissue supernatants but remained localized to producing PDT-treated cells. The upregulation of SAP gene was observed also in untreated IC-21 macrophages after they were co-incubated for 4 h with PDT-treated LLC cells. Based on these findings, SAP that accumulates in PDT-treated tumors may originate from both systemic sources (released from the liver as acute phase reactant) and local sources; the latter could include tumor cells directly sustaining PDT injury and macrophages invading the tumor that become stimulated by signals from these affected tumor cells. Since SAP gene upregulation in LLC cells increased with the lethality of PDT dose used for their treatment, we propose that cells sensing they are inflicted with mortal injury can turn on molecular programs insuring not only that they die an innocuous form of death (apoptosis) but also that once they are dead their elimination is (facilitated by SAP) swift and efficient.  相似文献   
32.
Photosystem II (PSII) is a multiprotein complex that catalyzes the light-driven water-splitting reactions of oxygenic photosynthesis. Light absorption by PSII leads to the production of excited states and reactive oxygen species that can cause damage to this complex. Here, we describe Arabidopsis (Arabidopsis thaliana) At1g71500, which encodes a previously uncharacterized protein that is a PSII auxiliary core protein and hence is named PHOTOSYSTEM II PROTEIN33 (PSB33). We present evidence that PSB33 functions in the maintenance of PSII-light-harvesting complex II (LHCII) supercomplex organization. PSB33 encodes a protein with a chloroplast transit peptide and one transmembrane segment. In silico analysis of PSB33 revealed a light-harvesting complex-binding motif within the transmembrane segment and a large surface-exposed head domain. Biochemical analysis of PSII complexes further indicates that PSB33 is an integral membrane protein located in the vicinity of LHCII and the PSII CP43 reaction center protein. Phenotypic characterization of mutants lacking PSB33 revealed reduced amounts of PSII-LHCII supercomplexes, very low state transition, and a lower capacity for nonphotochemical quenching, leading to increased photosensitivity in the mutant plants under light stress. Taken together, these results suggest a role for PSB33 in regulating and optimizing photosynthesis in response to changing light levels.PSII is a multiprotein complex in plants with 31 identified polypeptides (Wegener et al., 2011; Pagliano et al., 2013). It is associated with an extrinsic trimeric light-harvesting complex (LHC), forming the PSII-LHCII supercomplex. The PSII complex performs a remarkable biochemical reaction, the oxidation of water using light energy from the sun, which profoundly contributes to the overall biomass accumulation in the biosphere (Barber et al., 2004). Consequently, the stability and functional integrity of the PSII-LHCII supercomplex is crucially important for photosynthetic function. The energy of a photon, either absorbed directly by PSII or indirectly via energy transfer from adjacent antenna chlorophyll (Chl) molecules, excites the PSII reaction center P680. The excited state, P680*, can transfer an electron to pheophytin, producing the most powerful oxidant known in biology, P680+, which can remove electrons from water. Excessive input of excitation energy into PSII saturates the electron transfer system and causes either acceptor or donor site limitation in the complex. This results in increased production of reactive oxygen species (ROS): singlet oxygen at the PSII donor side and superoxide at the acceptor side (Munné-Bosch et al., 2013). Several protective mechanisms have been documented that decrease the production of singlet oxygen at the PSII donor side in photosynthetic eukaryotes. Notably, reducing energy transfer from LHC to PSII via nonphotochemical quenching (NPQ) is a key avoidance mechanism (Ruban and Murchie, 2012).Despite years of intensive study of PSII structure and function, new proteins that are associated with the PSII complex continue to be discovered, including an increasing number involved in the stability and organization of PSII-LHCII supercomplexes (García-Cerdán et al., 2011; Lu et al., 2011a; Wegener et al., 2011). Two complementary approaches (Merchant et al., 2007; Lu et al., 2008, 2011b; Ajjawi et al., 2010) that utilize phylogenomics (GreenCut) and large-scale phenotypic mutant screening (Chloroplast 2010 Project; http://www.plastid.msu.edu/) were employed by our groups to discover novel plant proteins with roles in photosynthesis. GreenCut identifies proteins found only in photosynthetic organisms, and it is likely that many of them are involved in biochemical processes associated with the structure, assembly, or function of the photosynthetic apparatus and the chloroplast that houses it (Merchant et al., 2007; Karpowicz et al., 2011). The Chloroplast 2010 Project was a large-scale reverse-genetic mutant screen in which thousands of homozygous Arabidopsis (Arabidopsis thaliana) transfer DNA (T-DNA) insertion lines were analyzed for defects in the rise and decay kinetics of Chl fluorescence (Lu et al., 2008, 2011a, 2011b; Ajjawi et al., 2010).The GreenCut and Chloroplast 2010 approaches both identified the Arabidopsis At1g71500 locus as encoding a protein of unknown function with potential relevance to photosynthesis. In this work, we demonstrate that plant lines carrying three independent mutations at this locus display severe light-induced photoinhibition due to a less stable supramolecular organization of PSII. Biochemical analyses revealed that this protein is associated with PSII complexes, and since the last described PSII protein was called PHOTOSYSTEM II PROTEIN32 (PSB32), we named the gene PSB33. The nuclear genome-encoded PSB33 is predicted to have a chloroplast transit peptide and a transmembrane domain. The biochemical analyses presented below indicate that PSB33 is required for the proper interaction and stability of PSII-LHCII supercomplexes and, in turn, in regulating photosynthesis in response to fluctuating light levels.  相似文献   
33.
In the introduction to this theme issue, Honing et al. suggest that the origins of musicality—the capacity that makes it possible for us to perceive, appreciate and produce music—can be pursued productively by searching for components of musicality in other species. Recent studies have highlighted that the behavioural relevance of stimuli to animals and the relation of experimental procedures to their natural behaviour can have a large impact on the type of results that can be obtained for a given species. Through reviewing laboratory findings on animal auditory perception and behaviour, as well as relevant findings on natural behaviour, we provide evidence that both traditional laboratory studies and studies relating to natural behaviour are needed to answer the problem of musicality. Traditional laboratory studies use synthetic stimuli that provide more control than more naturalistic studies, and are in many ways suitable to test the perceptual abilities of animals. However, naturalistic studies are essential to inform us as to what might constitute relevant stimuli and parameters to test with laboratory studies, or why we may or may not expect certain stimulus manipulations to be relevant. These two approaches are both vital in the comparative study of musicality.  相似文献   
34.
Butyl acetate holds great potential as a sustainable biofuel additive. Heterogeneously catalyzed transesterification of biobutanol and bioethylacetate can produce butyl acetate. This route is eco-friendly and offers several advantages over the commonly used Fischer Esterification. The Amberlite IR 120- and Amberlyst 15-catalyzed transesterification is studied in a batch reactor over a range of catalyst loading (6–12 wt.%), alcohol to ester feed ratio (1:3 to 3:1), and temperature (303.15–333.15 K). A butanol mole fraction of 0.2 in the feed is found to be optimum. Amberlite IR 120 promotes faster kinetics under these conditions. The transesterifications studied are slightly exothermic. The moles of solvent sorbed per gram of catalyst decreases (ethanol > butanol > ethyl acetate > butyl acetate) with decrease in solubility parameter. The dual site models, the Langmuir Hinshelwood and Popken models, are the most successful in correlating the kinetics over Amberlite IR 120 and Amberlyst 15, respectively.  相似文献   
35.
36.
Dialysis tubing containing spent culture media, when placed in a lake, was colonized by a low diversity of bacteria, whereas abiotic controls had considerable diversity. Changes were seen in the presence and absence of acylated homoserine lactones, suggesting that these molecules and other factors may influence adherent-population composition.  相似文献   
37.
38.
39.
Somatostatin inhibits dendritic cell responsiveness to Helicobacter pylori   总被引:2,自引:0,他引:2  
Somatostatin is a regulatory peptide found in abundance in the stomach. We have previously shown that somatostatin is required for IL-4-mediated resolution of Helicobacter pylori gastritis. In the current study, we hypothesize that somatostatin acts directly on antigen-presenting cells in the stomach to lessen the severity of gastritis. To test this hypothesis, we first show that CD11c+ dendritic cells are present in the infected tissue of mice with H. pylori-induced gastritis. Pretreatment of bone marrow-derived dendritic cells with somatostatin results in decreased IL-12 production, and lower splenocyte proliferation induced by H. pylori-stimulated dendritic cells. Furthermore, octreotide, a somatostatin analogue, is more potent than somatostatin in suppressing IL-12 release by H. pylori-stimulated dendritic cells through an NF-kappaB-independent pathway. In addition, IL-4 stimulates somatostatin secretion from dendritic cells. In conclusion, somatostatin inhibits dendritic cell activation by H. pylori; a possible mechanism by which IL-4 mediates resolution of gastritis. We suggest that octreotide may be effective in treating immune-mediated diseases of the stomach.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号