首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1697篇
  免费   98篇
  2023年   8篇
  2022年   8篇
  2021年   34篇
  2020年   14篇
  2019年   29篇
  2018年   44篇
  2017年   25篇
  2016年   53篇
  2015年   82篇
  2014年   82篇
  2013年   108篇
  2012年   162篇
  2011年   141篇
  2010年   80篇
  2009年   70篇
  2008年   107篇
  2007年   108篇
  2006年   112篇
  2005年   89篇
  2004年   68篇
  2003年   64篇
  2002年   65篇
  2001年   21篇
  2000年   13篇
  1999年   15篇
  1998年   17篇
  1997年   10篇
  1996年   10篇
  1995年   12篇
  1994年   10篇
  1993年   13篇
  1992年   6篇
  1991年   5篇
  1990年   6篇
  1989年   9篇
  1988年   6篇
  1987年   10篇
  1986年   6篇
  1985年   8篇
  1984年   8篇
  1983年   4篇
  1982年   7篇
  1980年   4篇
  1977年   5篇
  1975年   3篇
  1974年   5篇
  1973年   8篇
  1970年   2篇
  1969年   2篇
  1967年   5篇
排序方式: 共有1795条查询结果,搜索用时 203 毫秒
971.
Pseudomonas fluorescens PICF7 is an indigenous inhabitant of olive (Olea europaea L.) rhizosphere, able to display endophytic lifestyle in roots, to induce a wide range of defence responses upon colonization of this organ and to exert effective biological control against Verticillium wilt of olive (VWO) (Verticillium dahliae). We aimed to evaluate the involvement of specific PICF7 phenotypes in olive root colonization and VWO biocontrol effectiveness by generating mutants impaired in swimming motility (fliI) or siderophore pyoverdine production (pvdI). Besides, the performance of mutants with diminished in vitro growth in potato dextrose agar medium (gltA) and cysteine (Cys) auxotrophy was also assessed. Results showed that olive root colonization and VWO biocontrol ability of the fliI, pvdI and gltA mutants did not significantly differ from that displayed by the parental strain PICF7. Consequently, altered in vitro growth, swimming motility and pyoverdine production contribute neither to PICF7 VWO suppressive effect nor to its colonization ability. In contrast, the Cys auxotroph mutant showed reduced olive root colonization capacity and lost full biocontrol efficacy. Moreover, confocal laser scanning microscopy revealed that all mutants tested were able to endophytically colonize root tissue to the same extent as wild‐type PICF7, discarding these traits as relevant for its endophytic lifestyle.  相似文献   
972.
Ustilago maydis is an aerobic basidiomycete that depends on oxidative phosphorylation for its ATP supply, pointing to the mitochondrion as a key player in its energy metabolism. Mitochondrial respiratory complexes I, III2, and IV occur in supramolecular structures named respirasome. In this work, we characterized the subunit composition and the kinetics of NADH:Q oxidoreductase activity of the digitonine-solubilized respirasome (1600 kDa) and the free-complex I (990 kDa). In the presence of 2,6-dimethoxy-1,4-benzoquinone (DBQ) and cytochrome c, both the respirasome NADH:O2 and the NADH:DBQ oxidoreductase activities were inhibited by rotenone, antimycin A or cyanide. A value of 2.4 for the NADH oxidized/oxygen reduced ratio was determined for the respirasome activity, while ROS production was less than 0.001% of the oxygen consumption rate. Analysis of the NADH:DBQ oxidoreductase activity showed that respirasome was 3-times more active and showed higher affinity than free-complex I. The results suggest that the contacts between complexes I, III2 and IV in the respirasome increase the catalytic efficiency of complex I and regulate its activity to prevent ROS production.  相似文献   
973.
974.
The 90S preribosomal particle is required for the production of the 18S rRNA from a pre-rRNA precursor. Despite the identification of the protein components of this particle, its mechanism of assembly and structural design remain unknown. In this work, we have combined biochemical studies, proteomic techniques, and bioinformatic analyses to shed light into the rules of assembly of the yeast 90S preribosome. Our results indicate that several protein subcomplexes work as discrete assembly subunits that bind in defined steps to the 35S pre-rRNA. The assembly of the t-UTP subunit is an essential step for the engagement of at least five additional subunits in two separate, and mutually independent, assembling routes. One of these routes leads to the formation of an assembly intermediate composed of the U3 snoRNP, the Pwp2p/UTP-B, subunit and the Mpp10p complex. The other assembly route involves the stepwise binding of Rrp5p and the UTP-C subunit. We also report the use of a bioinformatic approach that provides a model for the topological arrangement of protein components within the fully assembled particle. Together, our data identify the mechanism of assembly of the 90S preribosome and offer novel information about its internal architecture.  相似文献   
975.
The microlocalisation of cadmium (Cd) at the tissue-cellular level in Lupinus albus L. cv. Multolupa was determined by energy-dispersive X-ray microanalysis (EDXMA). Experimental plants were grown on Cd-treated (0 and 150 microM) perlite for 35 days. In leaves, Cd was found inside cells (cytoplasm or vacuoles), especially in the vascular bundle cells. Cd-induced damage of the chloroplast structure was also detected. EDXMA of the roots showed the cell wall to be the main area of Cd binding at the cellular level; only a small amount of Cd was found in the vacuoles. At the tissue level, a decreasing Cd gradient was seen from the outer to the inner root cortical parenchyma. Cd and S were found co-localised in the vascular cylinder.  相似文献   
976.
Evolutionary Ecology - Telomeres, DNA structures located at the end of eukaryotic chromosomes, shorten with each cellular cycle. The shortening rate is affected by factors associated with stress,...  相似文献   
977.
Wild birds have been suggested to be reservoirs of antimicrobial resistant and/or pathogenic Enterococcus faecalis (Efs) strains, but the scarcity of studies and available sequences limit our understanding of the population structure of the species in these hosts. Here, we analysed the clonal and plasmid diversity of 97 Efs isolates from wild migratory birds. We found a high diversity, with most sequence types (STs) being firstly described here, while others were found in other hosts including some predominant in poultry. We found that pheromone-responsive plasmids predominate in wild bird Efs while 35% of the isolates entirely lack plasmids. Then, to better understand the ecology of the species, the whole genome of fivestrains with known STs (ST82, ST170, ST16 and ST55) were sequenced and compared with all the Efs genomes available in public databases. Using several methods to analyse core and accessory genomes (AccNET, PLACNET, hierBAPS and PANINI), we detected differences in the accessory genome of some lineages (e.g. ST82) demonstrating specific associations with birds. Conversely, the genomes of other Efs lineages exhibited divergence in core and accessory genomes, reflecting different adaptive trajectories in various hosts. This pangenome divergence, horizontal gene transfer events and occasional epidemic peaks could explain the population structure of the species.  相似文献   
978.

Background

STARD1 transports cholesterol into mitochondria of acutely regulated steroidogenic tissue. It has been suggested that STARD3 transports cholesterol in the human placenta, which does not express STARD1. STARD1 is proteolytically activated into a 30-kDa protein. However, the role of proteases in STARD3 modification in the human placenta has not been studied.

Methods

Progesterone determination and Western blot using anti-STARD3 antibodies showed that mitochondrial proteases cleave STARD3 into a 28-kDa fragment that stimulates progesterone synthesis in isolated syncytiotrophoblast mitochondria. Protease inhibitors decrease STARD3 transformation and steroidogenesis.

Results

STARD3 remained tightly bound to isolated syncytiotrophoblast mitochondria. Simultaneous to the increase in progesterone synthesis, STARD3 was proteolytically processed into four proteins, of which a 28-kDa protein was the most abundant. This protein stimulated mitochondrial progesterone production similarly to truncated-STARD3. Maximum levels of protease activity were observed at pH 7.5 and were sensitive to 1,10-phenanthroline, which inhibited steroidogenesis and STARD3 proteolytic cleavage. Addition of 22(R)-hydroxycholesterol increased progesterone synthesis, even in the presence of 1,10-phenanthroline, suggesting that proteolytic products might be involved in mitochondrial cholesterol transport.

Conclusion

Metalloproteases from human placental mitochondria are involved in steroidogenesis through the proteolytic activation of STARD3. 1,10-Phenanthroline inhibits STARD3 proteolytic cleavage. The 28-kDa protein and the amino terminal truncated-STARD3 stimulate steroidogenesis in a comparable rate, suggesting that both proteins share similar properties, probably the START domain that is involved in cholesterol binding.

General significance

Mitochondrial proteases are involved in syncytiotrophoblast-cell steroidogenesis regulation. Understanding STARD3 activation and its role in progesterone synthesis is crucial to getting insight into its action mechanism in healthy and diseased syncytiotrophoblast cells.  相似文献   
979.
Future biorefineries will integrate biomass conversion processes to produce fuels, power, heat and value-added chemicals. Due to its low price and wide distribution, lignocellulosic biomass is expected to play an important role toward this goal. Regarding renewable biofuel production, bioethanol from lignocellulosic feedstocks is considered the most feasible option for fossil fuels replacement since these raw materials do not compete with food or feed crops. In the overall process, lignin, the natural barrier of the lignocellulosic biomass, represents an important limiting factor in biomass digestibility. In order to reduce the recalcitrant structure of lignocellulose, biological pretreatments have been promoted as sustainable and environmentally friendly alternatives to traditional physico-chemical technologies, which are expensive and pollute the environment. These approaches include the use of diverse white-rot fungi and/or ligninolytic enzymes, which disrupt lignin polymers and facilitate the bioconversion of the sugar fraction into ethanol. As there is still no suitable biological pretreatment technology ready to scale up in an industrial context, white-rot fungi and/or ligninolytic enzymes have also been proposed to overcome, in a separated or in situ biodetoxification step, the effect of the inhibitors produced by non-biological pretreatments. The present work reviews the latest studies regarding the application of different microorganisms or enzymes as useful and environmentally friendly delignification and detoxification technologies for lignocellulosic biofuel production. This review also points out the main challenges and possible ways to make these technologies a reality for the bioethanol industry.  相似文献   
980.
Although bone responds to its mechanical environment, the cellular and molecular mechanisms underlying the response of the skeleton to mechanical unloading are not completely understood. Osteocytes are the most abundant but least understood cells in bones and are thought to be responsible for sensing stresses and strains in bone. Sclerostin, a product of the SOST gene, is produced postnatally primarily by osteocytes and is a negative regulator of bone formation. Recent studies show that SOST is mechanically regulated at both the mRNA and protein levels. During prolonged bed rest and immobilization, circulating sclerostin increases both in humans and in animal models, and its increase is associated with a decrease in parathyroid hormone. To investigate whether SOST/sclerostin up-regulation in mechanical unloading is a cell-autonomous response or a hormonal response to decreased parathyroid hormone levels, we subjected osteocytes to an in vitro unloading environment achieved by the NASA rotating wall vessel system. To perform these studies, we generated a novel osteocytic cell line (Ocy454) that produces high levels of SOST/sclerostin at early time points and in the absence of differentiation factors. Importantly, these osteocytes recapitulated the in vivo response to mechanical unloading with increased expression of SOST (3.4 ± 1.9-fold, p < 0.001), sclerostin (4.7 ± 0.1-fold, p < 0.001), and the receptor activator of nuclear factor κΒ ligand (RANKL)/osteoprotegerin (OPG) (2.5 ± 0.7-fold, p < 0.001) ratio. These data demonstrate for the first time a cell-autonomous increase in SOST/sclerostin and RANKL/OPG ratio in the setting of unloading. Thus, targeted osteocyte therapies could hold promise as novel osteoporosis and disuse-induced bone loss treatments by directly modulating the mechanosensing cells in bone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号