首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2337篇
  免费   146篇
  2483篇
  2023年   14篇
  2022年   15篇
  2021年   44篇
  2020年   18篇
  2019年   44篇
  2018年   65篇
  2017年   33篇
  2016年   66篇
  2015年   105篇
  2014年   107篇
  2013年   147篇
  2012年   208篇
  2011年   182篇
  2010年   121篇
  2009年   99篇
  2008年   137篇
  2007年   137篇
  2006年   142篇
  2005年   111篇
  2004年   104篇
  2003年   82篇
  2002年   99篇
  2001年   40篇
  2000年   27篇
  1999年   33篇
  1998年   37篇
  1997年   18篇
  1996年   18篇
  1995年   18篇
  1994年   14篇
  1993年   18篇
  1992年   16篇
  1991年   9篇
  1990年   10篇
  1989年   13篇
  1988年   13篇
  1987年   12篇
  1986年   7篇
  1985年   12篇
  1984年   12篇
  1983年   8篇
  1982年   10篇
  1981年   6篇
  1980年   6篇
  1979年   4篇
  1977年   5篇
  1974年   6篇
  1973年   5篇
  1971年   4篇
  1967年   5篇
排序方式: 共有2483条查询结果,搜索用时 0 毫秒
31.
Abstract: Turnover of dopamine, noradrenaline. serotonin, and their metabolites has been measured in striatum and substantia nigra of adult female rats that were fed control or selenium-deficient diets for 15 days. In addition, the glutathione peroxidase activity has been studied. The most striking result was the increase of dopamine turnover (63%) and 3- methoxytyramine turnover (55%) in substantia nigra between control and experimental animals. On the other hand, no changes were found in the turnover rate of dopamine and its metabolites in the striatum. Likewise, no changes were found in noradrenaline turnover in substantia nigra. In the striatum, there was a significant increase of serotonin turnover versus no change for 5-hydroxy-3-indoleacetic acid. However, in the substantia nigra, serotonin turnover did not show significant changes, whereas 5-hydroxy-3-indoleacetic acid turnover decreased. At the same time, glutathione peroxidase activity significantly decreased in both structures after selenium-deficient diets. These results suggest that a selenium-deficient diet for a short period of time decreases brain protection. principally in the substantia nigra, against oxidative damage.  相似文献   
32.
33.
Dipetarudin is a potent direct thrombin inhibitor that was genetically engineered as a chimera between dipetalogastin II and hirudin. Dipetarudin was initially cloned and purified from Escherichia coli, but with a very low yield of about 0.3 mg/l of culture medium. In this study, we report the production of dipetarudin in the methylotrophic yeast Pichia pastoris using pPIC9 vector. The His+ transformants were screened for the best expression performances by prolongation of the ecarin clotting time. An optimal dipetarudin's expression was reached by addition of methanol in culture medium to a final concentration of 0.5%, every 8h during 4 days. Secreted dipetarudin was purified essentially using a two-step purification scheme: anion exchange chromatography in a Resource Q column, followed by C18-reversed phase HPLC. About 150 mg purified dipetarudin was obtained from 1l culture supernatant. This yield is 500-fold higher than the yield obtained with the E. coli system. The molecular mass of dipetarudin calculated by MALDI-TOF (7450 Da) was in agreement with the mass calculated by the amino acid composition (7454 Da), indicating correct processing of the signal sequence. The Ki value of dipetarudin was 399+/-83 fM, which is in agreement with that calculated for the inhibitor isolated from E. coli. This efficient and cost-effective expression system facilitates large-scale production and purification of dipetarudin for further structural, functional and pharmacological investigations.  相似文献   
34.
We have evaluated the possibility that changes in the vascular system may constitute a contributing factor for the death of nigral dopaminergic neurons in Parkinson's disease. Thus, we have employed intranigral injections of vascular endothelial growth factor (VEGF), the most potent inducer of blood-brain barrier (BBB) permeability. A single dose of 1 mug of VEGF, chosen from a dose-response study, highly disrupted the BBB in the ventral mesencephalon in a time-dependent manner. A strong regional correlation between BBB disruption and loss of tyrosine hydroxylase-positive neurons was evident. Moreover, Fluoro-Jade B labelling showed the presence of dying neurons in the substantia nigra in response to VEGF injection. High number of TUNEL-positive nuclei was observed in this area along with activation of caspase 3 within nigral dopaminergic neurons. Analysis of the glial population demonstrated a strong inflammatory response and activation of astroglia in response to BBB disruption. We conclude that disruption of the BBB may be a causative factor for degeneration of nigral dopaminergic neurons.  相似文献   
35.
36.
The agriculture, forestry and other land use (AFOLU) sector is responsible for approximately 25% of anthropogenic GHG emissions mainly from deforestation and agricultural emissions from livestock, soil and nutrient management. Mitigation from the sector is thus extremely important in meeting emission reduction targets. The sector offers a variety of cost‐competitive mitigation options with most analyses indicating a decline in emissions largely due to decreasing deforestation rates. Sustainability criteria are needed to guide development and implementation of AFOLU mitigation measures with particular focus on multifunctional systems that allow the delivery of multiple services from land. It is striking that almost all of the positive and negative impacts, opportunities and barriers are context specific, precluding generic statements about which AFOLU mitigation measures have the greatest promise at a global scale. This finding underlines the importance of considering each mitigation strategy on a case‐by‐case basis, systemic effects when implementing mitigation options on the national scale, and suggests that policies need to be flexible enough to allow such assessments. National and international agricultural and forest (climate) policies have the potential to alter the opportunity costs of specific land uses in ways that increase opportunities or barriers for attaining climate change mitigation goals. Policies governing practices in agriculture and in forest conservation and management need to account for both effective mitigation and adaptation and can help to orient practices in agriculture and in forestry towards global sharing of innovative technologies for the efficient use of land resources. Different policy instruments, especially economic incentives and regulatory approaches, are currently being applied however, for its successful implementation it is critical to understand how land‐use decisions are made and how new social, political and economic forces in the future will influence this process.  相似文献   
37.
The origin of resistance to detergent solubilization in certain membranes, or membrane components, is not clearly understood. We have studied the solubilization by Triton X-100 of binary mixtures composed of egg sphingomyelin (SM) and either ceramide, diacylglycerol, or cholesterol. Solubilization has been assayed in the 4–50°C range, and the results are summarized in a novel, to our knowledge, form of plots, that we have called temperature-solubilization diagrams. Despite using a large detergent excess (lipid/detergent 1:20 mol ratio) and extended solubilization times (24–48 h) certain mixtures were not amenable to Triton X-100 solubilization at one or more temperatures. DSC of all the lipid mixtures, and of all the lipid + detergent mixtures revealed that detergent resistance was associated with the presence of gel domains at the assay temperature. Once the system melted down, solubilization could occur. In general adding high-melting lipids limited the solubilization, whereas the addition of low-melting lipids promoted it. Lipidomic analysis of Madin-Darby canine kidney cell membranes and of the corresponding detergent-resistant fraction indicated a large enrichment of the nonsolubilized components in saturated diacylglycerol and ceramide. SM-cholesterol mixtures were special in that detergent solubilization was accompanied, for certain temperatures and compositions, by an independent phenomenon of reassembly of the partially solubilized lipid bilayers. The temperature at which lysis and reassembly prevailed was ∼25°C, thus for some SM-cholesterol mixtures solubilization occurred both above and below 25°C, but not at that temperature. These observations can be at the origin of the detergent resistance effects observed with cell membranes, and they also mean that cholesterol-containing detergent-resistant membrane remnants cannot correspond to structures existing in the native membrane before detergent addition.  相似文献   
38.
Eighteen hours of immobilization stress, accompanied by food and water deprivation, increased liver metallothionein (MT) but decreased kidney MT levels. Food and water deprivation alone had a significant effect only on liver MT levels. In contrast, stress and food and water deprivation increased both liver and kidney lipid peroxidation levels, indicating that the relationship between MT and lipid peroxidation levels (an index of free radical production) is unclear. Adrenalectomy increased both liver and kidney MT levels in basal conditions, whereas the administration of corticosterone in the drinking water completely reversed the effect of adrenalectomy, indicating an inhibitory role of glucocorticoids on MT regulation in both tissues. Changes in glutathione (GSH) metabolism produced significant effects on kidney MT levels. Thus, the administration of buthionine sulfoximine, an inhibitor of GSH synthesis, decreased kidney GSH and increased kidney MT content, suggesting that increased cysteine pools because of decreased GSH synthesis might increase kidney MT levels through an undetermined mechanism as it appears to be the case in the liver. However, attempts to increase kidney MT levels by the administration of cysteine or GSH were unsuccesful, in contrast to what is known for the liver. The present results suggest that there are similarities but also substantial differences between liver and kidney MT regulation in these experimental conditions.  相似文献   
39.
40.
Lycopersicon esculentum plants exhibit increased salt stress tolerance following treatment with adipic acid monoethylester and 1,3-diaminepropane (DAAME), known as an inducer of resistance against biotic stress in tomato and pepper. For an efficient water and nutrient uptake, plants should adapt their water potential to compensate a decrease in water soil potential produced by salt stress. DAAME-treated plants showed a faster and stronger water potential reduction and an enhanced proline accumulation. Salinity-induced oxidative stress was also ameliorated by DAAME treatments. Oxidative membrane damage and ethylene emission were both reduced in DAAME-treated plants. This effect is probably a consequence of an increase of both non-enzymatic antioxidant activity as well as peroxidase activity. DAAME-mediated tolerance resulted in an unaltered photosynthetic rate and a stimulation of the decrease in transpiration under stress conditions without a cost in growth due to salt stress. The reduction in transpiration rate was concomitant with a reduction in phytotoxic Na+ and Cl accumulation under saline stress. Interestingly, the ABA deficient tomato mutant sitiens was insensitive to DAAME-induced tolerance following NaCl stress exposure. Additionally, DAAME treatments increased the ABA content of leaves, therefore, an intact ABA signalling pathway seems to be important to express DAAME-induced salt tolerance. Here, we show a possibility of enhance tomato stress tolerance by chemical induction of the major plant defences against salt stress. DAAME-induced tolerance against salt stress could be complementary to or share elements with induced resistance against biotic stress. This might be the reason for the observed wide spectrum of effectiveness of this compound.Key Words: adipic acid monoethyl ester, 1,3-diaminepropane, Lycopersicon esculentum, salt stress, oxidative stress, ethylene, chemical induced tolerance  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号