首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1686篇
  免费   98篇
  2023年   8篇
  2022年   8篇
  2021年   34篇
  2020年   14篇
  2019年   29篇
  2018年   44篇
  2017年   25篇
  2016年   53篇
  2015年   82篇
  2014年   82篇
  2013年   108篇
  2012年   162篇
  2011年   141篇
  2010年   80篇
  2009年   70篇
  2008年   107篇
  2007年   108篇
  2006年   112篇
  2005年   89篇
  2004年   68篇
  2003年   64篇
  2002年   65篇
  2001年   21篇
  2000年   13篇
  1999年   15篇
  1998年   17篇
  1997年   10篇
  1996年   10篇
  1995年   12篇
  1994年   10篇
  1993年   13篇
  1992年   6篇
  1991年   5篇
  1990年   6篇
  1989年   9篇
  1988年   5篇
  1987年   9篇
  1986年   5篇
  1985年   7篇
  1984年   8篇
  1983年   4篇
  1982年   6篇
  1980年   4篇
  1977年   4篇
  1975年   3篇
  1974年   4篇
  1973年   5篇
  1970年   2篇
  1969年   2篇
  1967年   5篇
排序方式: 共有1784条查询结果,搜索用时 15 毫秒
91.
As certain proteins control cell adhesion, it has been hoped that cell transplantation and tissue engineering could be augmented by pre-adsorption of specific proteins to biological or synthetic surfaces. The questions that remain, however, are whether such proteins can affect cell production as well as adhesion, and if so, whether in a protein-specific manner. We examined the adhesion and the biochemical secretion of bovine aortic endothelial cells (BAEC) on tissue culture polystyrene (TCPS) discs coated with fibronectin (Fn), laminin (Ln), or gelatin. The three coating proteins nonspecifically promote sub-confluent and post-confluent endothelial cell production of total protein up to 2.5-fold of the reference value. Total soluble glycosaminoglycan (GAG) production slightly increased with the different coatings only at low cell density. In contrast, Ln and Fn, not gelatin, drastically enhanced post-confluent BAEC production of prostaglandin (PGI2). However, antibody-blockage of the alpha5 integrin, constituent of the Fn receptor in BAEC, appeared to inhibit the upregulation of PGI2 production observed on Fn-coated surfaces. The results indicate that the cell adhesion mediators used as coating agents dictate cell biological production as well as adhesion and proliferation.  相似文献   
92.
93.
The adaptation of the respiratory metabolism in roots of soybean (Glycine max L. Merr. cv Ransom) treated with herbicides that inhibit the enzyme acetolactate synthase (ALS) was analyzed. A new gas phase dual-inlet mass spectrometry system for simultaneous measurement of 34O2 to 32O2 and O2 to N2 ratios has been developed. This system is more accurate than previously described systems, allows measurements of much smaller oxygen gradients, and, as a consequence, works with tissues that have lower respiration rates. ALS inhibition caused an increase of the alternative oxidase (AOX) protein and an accumulation of pyruvate. The combination of these two effects is likely to induce the activation of the alternative pathway and its participation in the total respiration. Moreover, the start of the alternative pathway activation and the increase of AOX protein were before the decline in the activity of cytochrome pathway. The possible role of AOX under ALS inhibition is discussed.  相似文献   
94.
It has been demonstrated that uranium is an embryo/fetal toxicant when given orally or subcutaneously to pregnant mice. On the other hand, maternal stress has been shown to enhance the developmental toxicity of a number of metals. In this study, maternal toxicity and developmental effects of a concurrent exposure to uranyl acetate dihydrate (UAD) and restraint stress were evaluated in rats. Four groups of pregnant animals were given subcutaneous injections of UAD at 0.415 and 0.830 mg/kg/day on Days 6 to 15 of gestation. Animals in two of these groups were also subjected to restraint for 2 hr/day during the same gestational days. Control groups included restrained and unrestrained pregnant rats not exposed to UAD. Cesarean sections were performed on gestation Day 20, and the fetuses were weighed and examined for malformations and variations. Maternal toxicity and embryotoxicity were noted at 0.830 mg/kg/day of UAD, while fetotoxicity was evidenced at 0.415 and 0.830 mg/kg/day of UAD by significant reductions in fetal body weight and increases in the total number of skeletally affected fetuses. No teratogenic effects were noted in any group. Maternal restraint enhanced uranium-induced embryo/fetal toxicity only at 0.830 mg/kg/day, a dose that was also significantly toxic to the dams. As in previous studies with other metals, maternal stress enhances uranium-induced developmental toxicity at uranium doses that are highly toxic to the dams; however, at doses that are less acutely toxic the role of maternal stress would not be significant.  相似文献   
95.
Monoamine oxidase isoform B (MAO-B) is involved in Parkinson's disease (PD) induced by the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine toxin (MPTP) in human and non-human-primate. MAO-B inhibitors, such as L-deprenyl have shown to prevent against MPTP-toxicity in different species, and it has been used in Parkinson therapy, however, the fact that it is metabolized to (-)-methamphetamine and (-)-amphetamine highlights the need to find out new MAO-B inhibitors without a structural amphetaminic moiety. In this context we herein report, for the first time, anywhere a novel non-amphetamine-like MAO-B inhibitor, PF 9601N, N-(2-propynyl)-2-(5-benzyloxy-indolyl) methylamine. This attenuates the MPTP-induced striatal dopamine depletion in young-adult and adult-old C57/BL mice, using different schedules of administration, and which behave "ex vivo" as a slightly more potent and selective MAO-B inhibitor than L-deprenyl, assayed for comparative purposes in the same experimental conditions. The MAO-B ID(50) values were calculated from the total MAO-B activity measured against [14C] phenylethylamine (22 microM) as substrate, at each inhibitor concentration. The MAO-B ID(50) values resulted to be 381 and 577 nmol/kg for PF 9601N and L-deprenyl, respectively. The intraperitoneally (i.p.) co-administration to young-adult C57/BL6 mice of MPTP (30 mg/kg), with different concentrations of PF 9601N or L-deprenyl (29.5-0.357 micromol/kg) showed a dose-dependent protective effect against striatal dopamine depletion, measuring the dopamine contents and its metabolites by HPLC. The ED(50) value proved to be 3.07 micromol/kg without any significant differences between either MAO-B inhibitor. Nevertheless, lower doses of PF 9601N (1.5 micromol/kg) were necessary to get almost total protection, without any change in the DOPAC and HVA content, when administered 2 h before MPTP (30 mg/kg), whereas partial protection (45%) against dopamine depletion was observed in the case of L-deprenyl. In both cases, MAO-B inhibition was a necessary condition in order to observe the protective effect. When adult-old (8-10 months) C57/BL6 mice were used, MPTP (25 mg/kg) administration induced 25 days later, an irreversible dopamine depletion. In these conditions, chronic administration with 0.15 micromol/kg of PF 9601N, before the toxin, every 24 h for 10 days, rendered almost total protection of dopamine depletion, whereas L-deprenyl yielded only 50% protection of the dopamine content, assayed in the same conditions. It is worth remarking, that in both cases MAO-B was not affected. From these results, it can be concluded that PF 9601N attenuates MPTP neurotoxicity "in vivo" better than L-deprenyl through different mechanisms, with special relevance to the protective effect, independent of MAO-B inhibition, observed in the irreversibly MPTP-lesioned adult-old mice. Therefore, this novel non-amphetamine MAO-B inhibitor could be potentially effective in PD therapy.  相似文献   
96.
OBJECTIVE: We investigated the effect of chronic estrogen treatment on the inhibitory action of nitric oxide (NO) on prolactin release. METHODS: The effect of NO on prolactin release was studied in anterior pituitaries of female Wistar rats, intact at random stages, ovariectomized (OVX), and OVX treated for 15 days with 17beta-estradiol (OVX-E(2)). RESULTS: Sodium nitroprusside (NP, 0.5 mM), a NO donor, inhibited prolactin release from anterior pituitaries and was able to stimulate cGMP synthesis in intact and OVX rats. Only a high, supraphysiological concentration of NP (2 mM) inhibited prolactin release from anterior pituitaries of OVX-E(2) rats and increased cGMP synthesis in OVX-E(2) rats. 8-Br-cGMP, a cGMP analogue, decreased prolactin release from anterior pituitaries of OVX rats but did not affect it in OVX-E(2) rats. CONCLUSION: Our results suggest that estrogen may modify the sensitivity of the anterior pituitary to the inhibitory effect of NO on prolactin release by affecting guanylyl cyclase activity and the cGMP pathway.  相似文献   
97.
d-Penicillamine (DPA) is effective in the treatment of Wilson’s disease, whereas zinc salts are also used as a therapy for this disorder of copper transport. Recently, it has been shown that the copper chelators 1,4,7,11-tetraazaundecane tetrahydrochloride (TAUD) and tetraethylenepentamine pentahydrochloride (TETREN) could be useful for copper mobilization in rats. Because these agents could be potential clinical alternatives to DPA for patients with Wilson’s disease who are intolerant to this drug, we examined whether oral administration of TAUD and TETREN could be effective in mobilizing copper in experimental copper-overloaded rats. The efficacy of a combined administration of zinc and DPA, TAUD, or TETREN was also assessed. Rats were copper loaded with 0.125% copper acetate in water for 12 wk. After this period, DPA, TAUD, and TETREN were administered by gavage at 0.67 mmol/kg/d for 5 d, and zinc was given at 2.5 mg Zn/kg/d. Twelve weeks of copper loading resulted in a 32-fold increase in total hepatic copper. TETREN was the most effective chelator in increasing the urinary excretion of copper. However, it did not reduce significantly the hepatic copper levels. In turn, combined administration of zinc and chelating agents significantly reduced the amount of copper found in the feces. Although TAUD and TETREN showed a similar or higher efficacy to DPA in mobilizing copper, concurrent treatment of chelating agents and zinc salts should be discarded according to the current results.  相似文献   
98.
In the present study we show that K+/H+ hydroxyl-containing ionophores lasalocid-A (LAS) and nigericin (NIG) in the nanomolar concentration range, inhibit Fe2+-citrate and 2,2'-azobis(2-amidinopropane) di-hydrochloride (ABAP)-induced lipid peroxidation in intact rat liver mitochondria and in egg phosphatidyl-choline (PC) liposomes containing negatively charged lipids—dicetyl phosphate (DCP) or cardiolipin (CL)—and KCl as the osmotic support. In addition, monensin (MON), a hydroxyl-containing ionophore with higher affinity for Na+ than for K+, promotes a similar effect when NaCl is the osmotic support. The protective effect of the ionophores is not observed when the osmolyte is sucrose. Lipid peroxidation was evidenced by mitochondrial swelling, antimycin A-insensitive O2 consumption, formation of thiobarbituric acid-reactive substances (TBARS), conjugated dienes, and electron paramagnetic resonance (EPR) spectra of an incorporated lipid spin probe. A time-dependent decay of spin label EPR signal is observed as a consequence of lipid peroxidation induced by both inductor systems in liposomes. Nitroxide destruction is inhibited by buty-lated hydroxytoluene, a known antioxidant, and by the hydroxyl-containing ionophores. In contrast, vali-nomycin (VAL), which does not possess alcoholic groups, does not display this protective effect. Effective order parameters (Seff), determined from the spectra of an incorporated spin label are larger in the presence of salt and display a small increase upon addition of the ionophores, as a result of the increase of counter ion concentration at the negatively charged bilayer surface. This condition leads to increased formation of the ion-ionophore complex, the membrane binding (uncharged) species. The membrane-incorporated complex is the active species in the lipid peroxidation inhibiting process. Studies in aqueous solution (in the absence of membranes) showed that NIG and LAS, but not VAL, decrease the Fe2+-citrate-induced production of radicals derived from piperazine-based buffers, demonstrating their property as radical scavengers. Both Fe2+-citrate and ABAP promote a much more pronounced decrease of LAS fluorescence in PC/CL liposomes than in dimyristoyl phosphatidyl-choline (DMPC, saturated phospholipid)-DCP liposomes, indicating that the ionophore also scavenges lipid peroxyl radicals. A slow decrease of fluorescence is observed in the latter system, for all lipid compositions in sucrose medium, and in the absence of membranes, indicating that the primary radicals stemming from both inductors also attack the ionophore. Altogether, the data lead to the conclusion that the membrane-incorporated cation complexes of NIG, LAS and MON inhibit lipid peroxidation by blocking initiation and propagation reactions in the lipid phase via a free radical scavenging mechanism, very likely due to the presence of alcoholic hydroxyl groups in all three molecules and to the attack of the aromatic moiety of LAS.  相似文献   
99.
G-protein-coupled receptors (GPCRs) transduce the signals for a wide range of hormonal and sensory stimuli by activating a heterotrimeric guanine nucleotide-binding protein (G protein). The analysis of loss-of-function and constitutively active receptor mutants has helped to reveal the functional properties of GPCRs and their role in human diseases. Here we describe the identification of a new class of mutants, dominant-negative mutants, for the yeast G-protein-coupled α-factor receptor (Ste2p). Sixteen dominant-negative receptor mutants were isolated based on their ability to inhibit the response to mating pheromone in cells that also express wild-type receptors. Detailed analysis of two of the strongest mutant receptors showed that, unlike other GPCR interfering mutants, they were properly localized at the plasma membrane and did not alter the stability or localization of wild-type receptors. Furthermore, their dominant-negative effect was inversely proportional to the relative amount of wild-type receptors and was reversed by overexpressing the G-protein subunits, suggesting that these mutants compete with the wild-type receptors for the G protein. Interestingly, the dominant-negative mutations are all located at the extracellular ends of the transmembrane segments, defining a novel region of the receptor that is important for receptor signaling. Altogether, our results identify residues of the α-factor receptor specifically involved in ligand binding and receptor activation and define a new mechanism by which GPCRs can be inactivated that has important implications for the evaluation of receptor mutations in other G-protein-coupled receptors.G-protein-coupled receptors (GPCRs) comprise a large family of receptors that are found in a wide range of eukaryotic organisms from yeasts to humans (4, 10). These receptors respond to diverse stimuli including hormones, neurotransmitters, and other chemical messengers (48). GPCRs transduce their signal by stimulating the α subunit of a heterotrimeric guanine nucleotide binding protein (G protein) to bind GTP (4, 16). This releases the α subunit from the βγ subunits, and then either the α subunit or the βγ subunits go on to promote signaling depending on the specific pathway (28).GPCRs are structurally similar in that they contain seven transmembrane domains (TMDs) connected by intracellular and extracellular loops. Although many techniques have been applied to study receptor function, much of our knowledge on the mechanisms of GPCR activation comes from the characterization of mutant receptors. Loss-of-function and supersensitive mutants have helped to identify receptor regions needed for ligand binding, G-protein activation, and down-regulation of signaling (4, 49). Furthermore, the study of constitutively active receptor mutations has played a key role in the development of current models for receptor activation (26). Naturally occurring GPCR mutations have also been implicated in a number of human diseases (8, 25, 42). Interestingly, the analysis of different mutant receptors indicates that GPCRs utilize common structural domains for similar functions. In particular, the third intracellular loop has an essential role in G-protein activation in a wide range of GPCRs.The genetic approaches possible in the yeast Saccharomyces cerevisiae have been used to examine the relationship between structure and function of the G-protein-coupled mating pheromone receptors. The α-factor and a-factor pheromones induce conjugation in yeast by binding to receptors with seven TMDs that activate a G-protein signal pathway that is highly conserved with mammalian signaling pathways (24). In fact, some human GPCRs can activate the pheromone signal pathway when they are expressed in yeast (19, 29). The analysis of loss-of-function, supersensitive, and constitutively active α-factor receptor mutants has begun to reveal the mechanisms for activation and regulation of this receptor. For example, the analysis of constitutively active mutants indicates that movement in the transmembrane segments plays a key role in α-factor receptor activation (22). Constitutive mutations and loss-of-function mutations implicate the third intracellular loop in G-protein activation (7, 34, 44). Mutagenesis studies also indicate that the cytoplasmic C terminus is not needed for G-protein activation but is involved in down-regulation of receptors by endocytosis (17) and desensitization of receptors by phosphorylation (6). In addition, studies with chimeric receptors suggest that the specificity for α-factor binding is determined by discontinuous segments of the α-factor receptor that include the transmembrane and extracellular regions (36, 37). Although some of the important domains of the α-factor receptor have been identified in these studies, the molecular mechanism of receptor signaling remains to be determined.Dominant-negative (DN) mutants represent an important class of mutation in which a mutant receptor interferes with the function of the wild-type (WT) version of the receptor. Since the inhibitory phenotype in DN mutants implies loss of some but not all functions of the protein, these mutants have been used to great advantage in other receptor systems. For example, in the case of receptor tyrosine kinases, DN mutants have been used to assign particular functions to specific structural features or to study the effects of blocking receptor signaling (18). In view of the large number of mutations reported for GPCRs, it is intriguing that there are few examples of dominant GPCR mutations (42, 43). Furthermore, in cases where it has been examined, dominant mutations in GPCRs seem to affect primarily the targeting of receptors to the plasma membrane and not directly the function of the WT receptors. Therefore, we sought to determine if the analysis of DN mutants could be applied to GPCRs by taking advantage of the genetic accessibility of the yeast S. cerevisiae. In this report, we describe the identification of DN mutations in the α-factor pheromone receptor. Interestingly, our results indicate that these DN mutants interfere with the activity of the WT receptors by competing for the G protein. In addition, these mutations identify a new domain on the extracellular side of the TMDs that is important for receptor function.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号