全文获取类型
收费全文 | 105篇 |
免费 | 9篇 |
专业分类
114篇 |
出版年
2021年 | 1篇 |
2020年 | 1篇 |
2019年 | 2篇 |
2017年 | 1篇 |
2016年 | 3篇 |
2015年 | 5篇 |
2014年 | 7篇 |
2013年 | 10篇 |
2012年 | 12篇 |
2011年 | 7篇 |
2010年 | 8篇 |
2009年 | 5篇 |
2008年 | 9篇 |
2007年 | 7篇 |
2006年 | 2篇 |
2005年 | 2篇 |
2004年 | 4篇 |
2003年 | 1篇 |
2002年 | 2篇 |
2001年 | 4篇 |
2000年 | 2篇 |
1999年 | 2篇 |
1998年 | 4篇 |
1997年 | 1篇 |
1996年 | 2篇 |
1994年 | 2篇 |
1993年 | 2篇 |
1991年 | 1篇 |
1987年 | 1篇 |
1982年 | 2篇 |
1978年 | 1篇 |
1975年 | 1篇 |
排序方式: 共有114条查询结果,搜索用时 15 毫秒
111.
112.
113.
Aaron Leong Joanne B. Cole Laura N. Brenner James B. Meigs Jose C. Florez Josep M. Mercader 《PLoS medicine》2021,18(3)
BackgroundEpidemiological studies report associations of diverse cardiometabolic conditions including obesity with COVID-19 illness, but causality has not been established. We sought to evaluate the associations of 17 cardiometabolic traits with COVID-19 susceptibility and severity using 2-sample Mendelian randomization (MR) analyses.Methods and findingsWe selected genetic variants associated with each exposure, including body mass index (BMI), at p < 5 × 10−8 from genome-wide association studies (GWASs). We then calculated inverse-variance-weighted averages of variant-specific estimates using summary statistics for susceptibility and severity from the COVID-19 Host Genetics Initiative GWAS meta-analyses of population-based cohorts and hospital registries comprising individuals with self-reported or genetically inferred European ancestry. Susceptibility was defined as testing positive for COVID-19 and severity was defined as hospitalization with COVID-19 versus population controls (anyone not a case in contributing cohorts). We repeated the analysis for BMI with effect estimates from the UK Biobank and performed pairwise multivariable MR to estimate the direct effects and indirect effects of BMI through obesity-related cardiometabolic diseases. Using p < 0.05/34 tests = 0.0015 to declare statistical significance, we found a nonsignificant association of genetically higher BMI with testing positive for COVID-19 (14,134 COVID-19 cases/1,284,876 controls, p = 0.002; UK Biobank: odds ratio 1.06 [95% CI 1.02, 1.10] per kg/m2; p = 0.004]) and a statistically significant association with higher risk of COVID-19 hospitalization (6,406 hospitalized COVID-19 cases/902,088 controls, p = 4.3 × 10−5; UK Biobank: odds ratio 1.14 [95% CI 1.07, 1.21] per kg/m2, p = 2.1 × 10−5). The implied direct effect of BMI was abolished upon conditioning on the effect on type 2 diabetes, coronary artery disease, stroke, and chronic kidney disease. No other cardiometabolic exposures tested were associated with a higher risk of poorer COVID-19 outcomes. Small study samples and weak genetic instruments could have limited the detection of modest associations, and pleiotropy may have biased effect estimates away from the null.ConclusionsIn this study, we found genetic evidence to support higher BMI as a causal risk factor for COVID-19 susceptibility and severity. These results raise the possibility that obesity could amplify COVID-19 disease burden independently or through its cardiometabolic consequences and suggest that targeting obesity may be a strategy to reduce the risk of severe COVID-19 outcomes.Aaron Leong and co-workers investigate causal risk factors for COVID-10 illness and severity. 相似文献
114.
Industrial biotechnology employs the controlled use of microorganisms for the production of synthetic chemicals or simple
biomass that can further be used in a diverse array of applications that span the pharmaceutical, chemical and nutraceutical
industries. Recent advances in metagenomics and in the incorporation of entire biosynthetic pathways into Saccharomyces cerevisiae have greatly expanded both the fitness and the repertoire of biochemicals that can be synthesized from this popular microorganism.
Further, the availability of the S. cerevisiae entire genome sequence allows the application of systems biology approaches for improving its enormous biosynthetic potential.
In this review, we will describe some of the efforts on using S. cerevisiae as a cell factory for the biosynthesis of high-value natural products that belong to the families of isoprenoids, flavonoids
and long chain polyunsaturated fatty acids. As natural products are increasingly becoming the center of attention of the pharmaceutical
and nutraceutical industries, the use of S. cerevisiae for their production is only expected to expand in the future, further allowing the biosynthesis of novel molecular structures
with unique properties. 相似文献