首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   162篇
  免费   19篇
  181篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2018年   3篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   8篇
  2013年   11篇
  2012年   19篇
  2011年   10篇
  2010年   11篇
  2009年   13篇
  2008年   17篇
  2007年   10篇
  2006年   4篇
  2005年   8篇
  2004年   12篇
  2003年   9篇
  2002年   9篇
  2001年   3篇
  2000年   1篇
  1996年   1篇
  1994年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1988年   3篇
  1987年   1篇
  1985年   1篇
  1979年   1篇
排序方式: 共有181条查询结果,搜索用时 0 毫秒
41.
CGEN-856S is a novel Mas agonist. Herein, we examined the effects of this peptide on isoproterenol (ISO)-induced cardiac remodeling and myocardial infarction (MI) injury. We also sought to determine whether CGEN-856S activates the underlying mechanisms related to Mas receptor activation. Heart hypertrophy and fibrosis were induced by ISO (2 mg·kg−1·day−1) in Wistar rats. After a 7-day treatment period with CGEN-856S (90 µg·kg−1·day−1) or vehicle, the cardiomyocyte diameter was evaluated in left ventricular sections stained with hematoxylin and eosin, and immunofluorescence labeling and quantitative confocal microscopy were used to quantify the deposition of type I and III collagen and fibronectin in the left ventricles. MI was induced by coronary artery ligation, and CGEN-856S (90 µg·kg−1·day−1) or saline was administered for 14 days. The Langendorff technique was used to evaluate cardiac function, and left ventricular sections were stained with Masson’s trichrome dye to quantify the infarct area. Using Chinese hamster ovary cells stably transfected with Mas cDNA, we evaluated whether CGEN-856S alters AKT and endothelial nitric oxide synthase (eNOS) phosphorylation. CGEN-856S reduced the degree of ISO-induced hypertrophy (13.91±0.17 µm vs. 12.41±0.16 µm in the ISO+CGEN-856S group). In addition, the Mas agonist attenuated the ISO-induced increase in collagen I, collagen III, and fibronectin deposition. CGEN-856S markedly attenuated the MI-induced decrease in systolic tension, as well as in +dT/dt and -dT/dt. Furthermore, CGEN-856S administration significantly decreased the infarct area (23.68±2.78% vs. 13.95±4.37% in the MI+CGEN-856S group). These effects likely involved the participation of AKT and NO, as CGEN-856S administration increased the levels of p-AKT and p-eNOS. Thus, our results indicate that CGEN-856S exerts cardioprotective effects on ISO-induced cardiac remodeling and MI-mediated heart failure in rats through a mechanism likely involving the eNOS/AKT pathway.  相似文献   
42.
Diversity of flower traits is often proposed as the outcome of selection exerted by pollinators. Positive directional pollinator‐mediated selection on floral size has been widely shown to reduce phenotypic variance. However, the underlying mechanism of maintaining within‐population floral color polymorphism is poorly understood. Divergent selection, mediated by different pollinators or by both mutualists and antagonists, may create and maintain such polymorphism, but it has rarely been shown to result from differential behavior of one pollinator. We tested whether different behaviors of the same pollinators in morning and evening are associated with dimorphic floral trait in Linum pubescens, a Mediterranean annual plant that exhibits variable within‐population frequencies of dark‐ and light‐colored flower tubes. Usia bicolor bee‐flies, the major pollinators of L. pubescens, are mostly feeding in the flower in the morning, while in the evening they are mostly visiting the flowers for mating. In 2 years of studying L. pubescens in a single large population in the Carmel, Israel, we found in one year that dark‐centered flowers received significantly higher fraction of visits in the morning. Fitness was positively affected by number of visits, but no fitness differences were found between tube‐color morphs, suggesting that both morphs have similar pollination success. Using mediation analysis, we found that flower size was under positive directional pollinator‐mediated selection in both years, but pollinator behavior did not explain entirely this selection, which was possibly mediated also by other agents, such as florivores or a‐biotic stresses. While most pollinator‐mediated selection studies show that flower size signals food reward, in L. pubescens, it may also signal for mating place, which may drive positive selection. While flower size found to be under pollinator‐mediated selection in L. pubescens, differential behavior of the pollinators in morning and evening did not seem to explain flower color polymorphism.  相似文献   
43.
Erythropoietin (Epo)-induced Stat5 phosphorylation (p-Stat5) is essential for both basal erythropoiesis and for its acceleration during hypoxic stress. A key challenge lies in understanding how Stat5 signaling elicits distinct functions during basal and stress erythropoiesis. Here we asked whether these distinct functions might be specified by the dynamic behavior of the Stat5 signal. We used flow cytometry to analyze Stat5 phosphorylation dynamics in primary erythropoietic tissue in vivo and in vitro, identifying two signaling modalities. In later (basophilic) erythroblasts, Epo stimulation triggers a low intensity but decisive, binary (digital) p-Stat5 signal. In early erythroblasts the binary signal is superseded by a high-intensity graded (analog) p-Stat5 response. We elucidated the biological functions of binary and graded Stat5 signaling using the EpoR-HM mice, which express a "knocked-in" EpoR mutant lacking cytoplasmic phosphotyrosines. Strikingly, EpoR-HM mice are restricted to the binary signaling mode, which rescues these mice from fatal perinatal anemia by promoting binary survival decisions in erythroblasts. However, the absence of the graded p-Stat5 response in the EpoR-HM mice prevents them from accelerating red cell production in response to stress, including a failure to upregulate the transferrin receptor, which we show is a novel stress target. We found that Stat5 protein levels decline with erythroblast differentiation, governing the transition from high-intensity graded signaling in early erythroblasts to low-intensity binary signaling in later erythroblasts. Thus, using exogenous Stat5, we converted later erythroblasts into high-intensity graded signal transducers capable of eliciting a downstream stress response. Unlike the Stat5 protein, EpoR expression in erythroblasts does not limit the Stat5 signaling response, a non-Michaelian paradigm with therapeutic implications in myeloproliferative disease. Our findings show how the binary and graded modalities combine to generate high-fidelity Stat5 signaling over the entire basal and stress Epo range. They suggest that dynamic behavior may encode information during STAT signal transduction.  相似文献   
44.
Encoding of vibrissal active touch   总被引:9,自引:0,他引:9  
Szwed M  Bagdasarian K  Ahissar E 《Neuron》2003,40(3):621-630
Mammals acquire much of their sensory information by actively moving their sensory organs. Yet, the principles of encoding by active sensing are not known. Here we investigated the encoding principles of active touch by rat whiskers (vibrissae). We induced artificial whisking in anesthetized rats and recorded from first-order neurons in the trigeminal ganglion. During active touch, first-order trigeminal neurons presented a rich repertoire of responses, which could not be inferred from their responses to passive deflection stimuli. Individual neurons encoded four specific events: whisking, contact with object, pressure against object, and detachment from object. Whisking-responsive neurons fired at specific deflection angles, reporting the actual whiskers' position with high precision. Touch-responsive neurons encoded the horizontal coordinate of objects' position by spike timing. These findings suggest two specific encoding-decoding schemes for horizontal object position in the vibrissal system.  相似文献   
45.
G-protein coupled receptors (GPCRs) are a major group of drug targets for which only one x-ray structure is known (the nondrugable rhodopsin), limiting the application of structure-based drug discovery to GPCRs. In this paper we present the details of PREDICT, a new algorithmic approach for modeling the 3D structure of GPCRs without relying on homology to rhodopsin. PREDICT, which focuses on the transmembrane domain of GPCRs, starts from the primary sequence of the receptor, simultaneously optimizing multiple 'decoy' conformations of the protein in order to find its most stable structure, culminating in a virtual receptor-ligand complex. In this paper we present a comprehensive analysis of three PREDICT models for the dopamine D2, neurokinin NK1, and neuropeptide Y Y1 receptors. A shorter discussion of the CCR3 receptor model is also included. All models were found to be in good agreement with a large body of experimental data. The quality of the PREDICT models, at least for drug discovery purposes, was evaluated by their successful utilization in in-silico screening. Virtual screening using all three PREDICT models yielded enrichment factors 9-fold to 44-fold better than random screening. Namely, the PREDICT models can be used to identify active small-molecule ligands embedded in large compound libraries with an efficiency comparable to that obtained using crystal structures for non-GPCR targets.  相似文献   
46.
Gp210 is an evolutionarily conserved membrane protein of the nuclear pore complex (NPC). We studied the phenotypes produced by RNAi-induced downregulation of gp210 in both human (HeLa) cells and Caenorhabditis elegans embryos. HeLa cell viability requires Gp210 activity. The dying cells accumulated clustered NPCs and aberrant membrane structures at the nuclear envelope, suggesting that gp210 is required directly or indirectly for nuclear pore formation and dilation as well as the anchoring or structural integrity of mature NPCs. Essential roles for gp210 were confirmed in C. elegans, where RNAi-induced reduction of gp210 caused embryonic lethality. The nuclear envelopes of embryos with reduced gp210 also had aberrant nuclear membrane structures and clustered NPCs, confirming that gp210 plays critical roles at the nuclear membrane through mechanisms that are conserved from nematodes to humans.  相似文献   
47.
48.
49.
Quarantine treatment enables export of avocado fruit (Persea americana) to parts of the world that enforce quarantine against fruit fly. The recommended cold-based quarantine treatment (storage at 1.1°C for 14 days) was studied with two commercial avocado cultivars ‘Hass’ and ‘Ettinger’ for 2 years. Chilling injuries (CIs) are prevalent in the avocado fruit after cold-quarantine treatment. Hence, we examined the effect of integrating several treatments: modified atmosphere (MA; fruit covered with perforated polyethylene bags), methyl jasmonate (MJ; fruit dipped in 2.5 μM MJ for Hass or 10 μM MJ for Ettinger for 30 s), 1-methylcyclopropene (1-MCP; fruit treated with 300 ppb 1-MCP for 18 h) and low-temperature conditioning (LTC; a gradual decrease in temperature over 3 days) on CI reduction during cold quarantine. Avocado fruit stored at 1°C suffered from severe CI, lipid peroxidation, and increased expression of chilling-responsive genes of fruit peel. The combined therapeutic treatments alleviated CI in cold-quarantined fruit to the level in fruit stored at commercial temperature (5°C). A successful therapeutic treatment was developed to protect ‘Hass’ and ‘Ettinger’ avocado fruit during cold quarantine against fruit fly, while maintaining fruit quality. Subsequently, treated fruit stored at 1°C had a longer shelf life and less decay than the fruit stored at 5°C. This therapeutic treatment could potentially enable the export of avocado fruit to all quarantine-enforcing countries. Similar methods might be applicable to other types of fruit that require cold quarantine.  相似文献   
50.
Ben-Menachem R  Tal M  Shadur T  Pines O 《Proteomics》2011,11(23):4468-4476
There are a growing number of examples of identical or almost identical proteins, which are localized to two (or more) separate compartments, a phenomenon that is termed protein dual localization, dual distribution or dual targeting. We previously divided a reference set of known yeast mitochondrial proteins into two groups, suggested to be dual localized or exclusive mitochondrial proteins. Here we examined this evaluation by screening 320 mitochondrial gene products for dual targeting, using the α-complementation assay. The analysis of the results of this experimentally independent screen supports our previous evaluation that dual localized mitochondrial proteins constitute a subgroup of mitochondrial proteins with distinctive properties. These proteins are characterized by a lower probability of mitochondrial localization (MitoProtII score), a lower net charge and are enriched for proteins with a weaker mitochondrial targeting sequence. Conversely, mRNAs of exclusive mitochondrial proteins are enriched in polysomes associated with mitochondria. Based on the discovery of more than 60 new gene products that are now assumed to be dual targeted, we have updated an annotation list of dual-targeted proteins. We currently estimate that more than a third of the mitochondrial proteome is dual targeted, and suggest that this abundant dual targeting presents an evolutionary advantage.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号