首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   16篇
  167篇
  2021年   3篇
  2019年   2篇
  2018年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   3篇
  2012年   6篇
  2011年   10篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   5篇
  2006年   4篇
  2005年   6篇
  2004年   4篇
  2003年   4篇
  2002年   2篇
  2001年   10篇
  2000年   1篇
  1999年   2篇
  1998年   9篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1993年   2篇
  1992年   3篇
  1991年   1篇
  1990年   2篇
  1989年   2篇
  1988年   6篇
  1987年   2篇
  1986年   9篇
  1985年   4篇
  1984年   2篇
  1982年   1篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1975年   3篇
  1971年   1篇
  1966年   1篇
  1954年   1篇
  1937年   1篇
  1934年   2篇
  1931年   3篇
  1930年   2篇
  1929年   2篇
  1927年   3篇
排序方式: 共有167条查询结果,搜索用时 14 毫秒
101.
A positive relationship between genetic diversity at neutral markers and juvenile survival has been demonstrated for many vertebrate populations, although the correlation is typically weak and the explanation for it remains controversial. We assessed variation at 9-12 microsatellite loci in 65 juvenile harp seals (Phoca groenlandica) that stranded in poor condition around Long Island, NY, from 2001 to 2004. Compared with seals that died, surviving individuals had slightly higher measures of mean d(2), which reflects the size difference between alleles within an individual and provides an index of outbreeding. In contrast, there were no significant differences between survivors and nonsurvivors in heterozygosity or estimates of internal relatedness. This pattern is attributed to the fact that these microsatellite markers were exceptionally variable in this species (9-22 alleles per locus), and all individuals were heterozygous at most loci. Under these circumstances, mean d(2) may provide a powerful measure for assessing diversity-fitness correlations.  相似文献   
102.
Blood‐borne nucleated cells participate not only in inflammation, but in tissue repair and regeneration. Because progenitor and stem cell populations have a low concentration in the blood, the circulation kinetics and tissue distribution of these cells is largely unknown. An important approach to tracking cell lineage is the use of fluorescent tracers and parabiotic models of cross‐circulation. Here, we investigated the cross‐circulation and cell distribution kinetics of C57/B6 GFP+/wild‐type parabionts. Flow cytometry analysis of the peripheral blood after parabiosis demonstrated no evidence for a “parabiotic barrier” based on cell size or surface characterstics; all peripheral blood cell subpopulations in this study reached equilibrium within 14 days. Whole blood fluorescence analysis indicated that the mean exchange flow rate was 16 µl/h or 0.66% of the circulating blood volume per hour. Studies of peripheral lymphoid organs indicated differential cell distribution kinetics. Some subpopulations, such as CD8+ and CD11c+, equilibrated in both lymph nodes and spleen indicating a residence time <28 days; in contrast, other lymphocyte subpopulations, such as B220+ and CD4+ cells, had not yet reached equilibrium at 28 days. We conclude that parabiosis can provide important insights into defining tissue distribution, residence times, and recirculating pools using fluorochrome markers of cell lineage. J. Cell. Physiol. 227: 821–828, 2012. © 2011 Wiley Periodicals, Inc.  相似文献   
103.
The mechanism by which distinct stimuli activate the same mitogen-activated protein kinases (MAPKs) is unclear. We examined compartmentalized MAPK signaling and altered redox state as possible mechanisms. Adult rat cardiomyocytes were exposed to the adenosine A(1) receptor agonist 2-chloro-N(6)-cyclopentyladenosine (CCPA; 500 nM) or H(2)O(2) (100 microM) for 15 min. Nuclear/myofilament, cytosolic, Triton-soluble membrane, and Triton-insoluble membrane fractions were generated. CCPA and H(2)O(2) activated p38 MAPK and p44/p42 ERKs in cytosolic fractions. In Triton-soluble membrane fractions, H(2)O(2) activated p38 MAPK and p42 ERK, whereas CCPA had no effect on MAPK activation in this fraction. The greatest difference between H(2)O(2) and CCPA was in the Triton-insoluble membrane fraction, where H(2)O(2) increased p38 and p42 activation and CCPA reduced MAPK activation. CCPA also increased protein phosphatase 2A activity in the Triton-insoluble membrane fraction, suggesting that the activation of this phosphatase may mediate CCPA effects in this fraction. The Triton-insoluble membrane fraction was enriched in the caveolae marker caveolin-3, and >85% of p38 MAPK and p42 ERK was bound to this scaffolding protein in these membranes, suggesting that caveolae may play a role in the divergence of MAPK signals from different stimuli. The antioxidant N-2-mercaptopropionyl glycine (300 microM) reduced H(2)O(2)-mediated MAPK activation but failed to attenuate CCPA-induced MAPK activation. H(2)O(2) but not CCPA increased reactive oxygen species (ROS). Thus the adenosine A(1) receptor and oxidative stress differentially modulate subcellular MAPKs, with the main site of divergence being the Triton-insoluble membrane fraction. However, the adenosine A(1) receptor-mediated MAPK activation does not involve ROS formation.  相似文献   
104.
105.
106.
The systemic immune response is a dynamic process involving the trafficking of lymphocytes from the Ag-stimulated lymph node to the peripheral tissue. Studies in sheep have demonstrated several phases of cell output in the efferent lymph after Ag stimulation. When skin contact sensitizers are used as Ag, the efferent lymph cell output peaks approximately 96 h after Ag stimulation and is temporally associated with the recruitment of cells into the skin. To investigate the relative contribution of this high-output phase of efferent lymphocytes to lymphocytic inflammation in the skin, we used a common contact sensitizer 2-phenyl-4-ethoxymethylene-5-oxazolone (oxazolone) to stimulate the skin and draining prescapular lymph node of adult sheep. The efferent lymph ducts draining the Ag-stimulated and contralateral control lymph nodes were cannulated throughout the experimental period. The lymphocytes leaving the lymph nodes during the 72-h period before maximum infiltration were differentially labeled with fluorescent tracers, reinjected into the arterial circulation, and tracked to the site of Ag stimulation. Quantitative tissue cytometry of the skin at the conclusion of the injection period (96 h after Ag stimulation) demonstrated more migratory cells derived from the Ag-stimulated lymph node than the contralateral control (median 18.5 vs 15.5 per field; p < 0.05). However, when corrected for total cell output of the lymph node, the Ag-stimulated migratory cells were 3.8-fold more prevalent in the skin than the contralateral control cells. These results suggest that the in situ immune response generally mirrors the frequency of recruitable lymphocytes in the peripheral blood.  相似文献   
107.
Frequency-dependent characteristics of lung resistance (RL) and elastance (EL) are sensitive to different patterns of airway obstruction. We used an enhanced ventilator waveform (EVW) to measure inspiratory RL and EL spectra in ventilated patients during thoracic surgery. The EVW delivers an inspiratory flow waveform with enhanced spectral excitation from 0.156 to 8.1 Hz. Estimates of the coefficients in a trigonometric approximation of the EVW flow and transpulmonary pressure inspirations yielded inspiratory RL and EL spectra. We applied the EVW in a group with mild obstruction undergoing various thoracoscopic procedures (n = 6), and another group with severe chronic obstructive pulmonary disease undergoing lung volume reduction surgery (n = 8). Measurements were made at positive end-expiratory pressure (PEEP) of 0, 3, and 6 cmH(2)O. Inspiratory RL was similar in both groups despite marked differences in spirometry. The chronic obstructive pulmonary disease patients demonstrated a pronounced frequency-dependent increase in inspiratory EL consistent with severe heterogeneous peripheral airway obstruction. PEEP appears to have beneficial effects by reducing peripheral airway resistance. Lung volume reduction surgery resulted in increased inspiratory RL and EL at all frequencies and PEEPs, possibly due to loss of diseased lung tissue, pulmonary edema, increased mechanical heterogeneity, and/or an improvement in airway tethering.  相似文献   
108.
109.
In order to define the influence of skeletal protein organization on transmembrane phospholipid movement in erythrocyte membranes, we measured the translocation rate of lysophosphatidylcholine in pathologic red cells. A simple method based on the differential extraction of lysophosphatidylcholine from the red cell membrane by saline and albumin solutions was used to quantitate the translocation rate. Two groups of pathologic red cells were chosen for these studies: red cells with quantitative deficiencies of the skeletal proteins, spectrin and protein 4.1, and sickle erythrocytes in which controlled reorganization of the membrane was induced by hemoglobin polymerization. Marked increase in lipid translocation rate was seen in red cells having quantitative deficiencies of spectrin and protein 4.1. The magnitude of the increase in translocation rate in spectrin-deficient red cells was related to the magnitude of protein deficiency. Translocation rate in sickle erythrocyte membranes increased by 50% upon deoxygenation as a result of sickle hemoglobin polymerization. No increase in translocation rate was seen in normal cells upon deoxygenation. By manipulating the extent of membrane reorganization that occurred following deoxygenation of sickle cells, we have been able to show that skeletal reorganization induced by hemoglobin polymerization and not hemoglobin polymerization per se is responsible for the increase in translocation rate. Together, these findings imply that the structural organization of membrane skeletal proteins plays an important role in regulating the rate of transbilayer movement of lipids across the erythrocyte membrane.  相似文献   
110.
Folding of proteins entering the secretory pathway in mammalian cells frequently requires the insertion of disulfide bonds. Disulfide insertion can result in covalent linkages found in the native structure as well as those that are not, so‐called non‐native disulfides. The pathways for disulfide formation are well characterized, but our understanding of how non‐native disulfides are reduced so that the correct or native disulfides can form is poor. Here, we use a novel assay to demonstrate that the reduction in non‐native disulfides requires NADPH as the ultimate electron donor, and a robust cytosolic thioredoxin system, driven by thioredoxin reductase 1 (TrxR1 or TXNRD1). Inhibition of this reductive pathway prevents the correct folding and secretion of proteins that are known to form non‐native disulfides during their folding. Hence, we have shown for the first time that mammalian cells have a pathway for transferring reducing equivalents from the cytosol to the ER, which is required to ensure correct disulfide formation in proteins entering the secretory pathway.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号