首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   247篇
  免费   12篇
  2023年   1篇
  2022年   3篇
  2021年   4篇
  2020年   3篇
  2019年   7篇
  2018年   5篇
  2017年   2篇
  2016年   8篇
  2015年   16篇
  2014年   15篇
  2013年   30篇
  2012年   29篇
  2011年   20篇
  2010年   11篇
  2009年   13篇
  2008年   20篇
  2007年   12篇
  2006年   10篇
  2005年   15篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   1篇
  1993年   2篇
  1991年   1篇
  1989年   1篇
  1988年   1篇
  1984年   3篇
  1983年   1篇
  1970年   1篇
排序方式: 共有259条查询结果,搜索用时 15 毫秒
21.
Identifying general patterns of colonization and radiation in island faunas is often hindered by past human-caused extinctions. The insular Caribbean is one of the only complex oceanic-type island systems colonized by land mammals, but has witnessed the globally highest level of mammalian extinction during the Holocene. Using ancient DNA analysis, we reconstruct the evolutionary history of one of the Caribbean''s now-extinct major mammal groups, the insular radiation of oryzomyine rice rats. Despite the significant problems of recovering DNA from prehistoric tropical archaeological material, it was possible to identify two discrete Late Miocene colonizations of the main Lesser Antillean island chain from mainland South America by oryzomyine lineages that were only distantly related. A high level of phylogenetic diversification was observed within oryzomyines across the Lesser Antilles, even between allopatric populations on the same island bank. The timing of oryzomyine colonization is closely similar to the age of several other Caribbean vertebrate taxa, suggesting that geomorphological conditions during the Late Miocene facilitated broadly simultaneous overwater waif dispersal of many South American lineages to the Lesser Antilles. These data provide an important baseline by which to further develop the Caribbean as a unique workshop for studying island evolution.  相似文献   
22.
Highly pathogenic avian influenza virus (HPAIV) of the subtype H5N1 causes severe, often fatal pneumonia in humans. The pathogenesis of HPAIV H5N1 infection is not completely understood, although the alveolar macrophage (AM) is thought to play an important role. HPAIV H5N1 infection of macrophages cultured from monocytes leads to high percentages of infection accompanied by virus production and an excessive pro-inflammatory immune response. However, macrophages cultured from monocytes are different from AM, both in phenotype and in response to seasonal influenza virus infection. Consequently, it remains unclear whether the results of studies with macrophages cultured from monocytes are valid for AM. Therefore we infected AM and for comparison macrophages cultured from monocytes with seasonal H3N2 virus, HPAIV H5N1 or pandemic H1N1 virus, and determined the percentage of cells infected, virus production and induction of TNF-alpha, a pro-inflammatory cytokine. In vitro HPAIV H5N1 infection of AM compared to that of macrophages cultured from monocytes resulted in a lower percentage of infected cells (up to 25% vs up to 84%), lower virus production and lower TNF-alpha induction. In vitro infection of AM with H3N2 or H1N1 virus resulted in even lower percentages of infected cells (up to 7%) than with HPAIV H5N1, while virus production and TNF-alpha induction were comparable. In conclusion, this study reveals that macrophages cultured from monocytes are not a good model to study the interaction between AM and these influenza virus strains. Furthermore, the interaction between HPAIV H5N1 and AM could contribute to the pathogenicity of this virus in humans, due to the relative high percentage of infected cells rather than virus production or an excessive TNF-alpha induction.  相似文献   
23.
24.
Single molecule studies on membrane proteins embedded in their native environment are hampered by the intrinsic difficulty of immobilizing elastic and sensitive biological membranes without interfering with protein activity. Here, we present hydrogels composed of nano-scaled fibers as a generally applicable tool to immobilize biological membrane vesicles of various size and lipid composition. Importantly, membrane proteins immobilized in the hydrogel as well as soluble proteins are fully active. The triggered opening of the mechanosensitive channel of large conductance (MscL) reconstituted in giant unilamellar vesicles (GUVs) was followed in time on single GUVs. Thus, kinetic studies of vectorial transport processes across biological membranes can be assessed on single, hydrogel immobilized, GUVs. Furthermore, protein translocation activity by the membrane embedded protein conducting channel of bacteria, SecYEG, in association with the soluble motor protein SecA was quantitatively assessed in bulk and at the single vesicle level in the hydrogel. This technique provides a new way to investigate membrane proteins in their native environment at the single molecule level by means of fluorescence microscopy.  相似文献   
25.
26.
PURPOSE OF REVIEW: The appearance of scavenger receptor class B type I (SR-BI) and ATP-binding cassette transporter A1 (ABCA1) in macrophages and liver implicates these transporters in different stages of reverse cholesterol transport. This review focuses on the role of SR-BI and ABCA1 in reverse cholesterol transport in the context of atherosclerotic lesion development. RECENT FINDINGS: Recent studies indicate that hepatic expression of ABCA1 and SR-BI is important for the generation of nascent HDL and the delivery of HDL cholesteryl esters to the liver, respectively. Although macrophage SR-BI and ABCA1 do not contribute significantly to circulating HDL levels, the perpetual cycle of HDL lipidation and delipidation by the liver ensures the availability of acceptors for cholesterol efflux that maintain cholesterol homeostasis in arterial macrophages, thereby reducing atherogenesis. In addition to its established role in the selective uptake of HDL cholesteryl esters, there is now evidence that hepatic SR-BI facilitates postprandial lipid metabolism, and that hepatic secretion of VLDL is dependent on ABCA1-mediated nascent HDL formation. Thus, remnant and HDL metabolism are more intimately intertwined in hepatic lipid metabolism than has previously been appreciated. SUMMARY: Recent advances in the understanding of the role of ABCA1 and SR-BI in HDL metabolism and their atheroprotective properties indicate the significant potential of modulating ABCA1 and SR-BI expression in both arterial wall macrophages and the liver for the treatment of atherosclerotic coronary artery disease.  相似文献   
27.
Male-killing bacteria are generally thought to attain low to intermediate prevalence in natural populations, with only mild effects on the host population sex ratio. This view was recently challenged by reports of extremely high infection frequencies in three butterfly species, raising the prospect that male killers, by making males rare, might drive many features of host ecology and evolution. To assess this hypothesis, it is necessary to evaluate how often male killers actually produce a highly female-biased population sex ratio in nature, which requires both high prevalence of infection and high penetrance of action. To this end, we surveyed South Pacific and Southeast Asian populations of Hypolimnas bolina, a butterfly in which extreme prevalence of male-killing Wolbachia bacteria has recently been recorded. Our results indicate that highly female-biased populations are common in Polynesia, with 6 out of 12 populations studied having in excess of 70% of females infected with a fully efficient male killer. However, heterogeneity is extreme in Polynesia, with the male-killing Wolbachia absent from three populations. In contrast to the Polynesian situation, Wolbachia does not kill males in any of the three Southeast Asian populations studied, despite its very high prevalence there. We conclude that male killers are likely to have significant ongoing ecological and evolutionary impact in 6 of the 15 populations surveyed. The causes and consequences of the observed spatial variation are discussed with respect to host resistance evolution, host ecology and interference with additional symbionts.  相似文献   
28.
The function of scavenger receptor class B type I (SR-BI) in mediating the selective uptake of HDL cholesteryl esters is well established. In SR-BI-deficient mice, we recently observed a delayed postprandial triglyceride (TG) response, suggesting an additional role for SR-BI in facilitating chylomicron (CM) metabolism. Here, we assessed the effect of adenovirus-mediated hepatic overexpression of SR-BI (Ad.SR-BI) in C57BL/6J mice on serum lipids and CM metabolism. Infection of 5 x 10(8) plaque-forming units per mouse of Ad.SR-BI significantly decreases serum cholesterol (>90%), phospholipids (>90%), and TG levels (50%), accompanied by a 41.4% reduction (P < 0.01) in apolipoprotein B-100 levels. The postprandial TG response is 2-fold lower in mice treated with Ad.SR-BI compared with control mice (area under the curve = 31.4 +/- 2.4 versus 17.7 +/- 3.2; P < 0.05). Hepatic mRNA expression levels of genes known to be involved in serum cholesterol and TG clearance are unchanged and thus could not account for the decreased plasma TG levels and the change in postprandial response. We conclude that overexpression of SR-BI accelerates CM metabolism, possibly by mediating the initial capture of CM remnants by the liver, whereby the subsequent internalization can be exerted by additional receptor systems such as the LDL receptor (LDLr) and LDLr-related protein 1.  相似文献   
29.
There is unequivocal evidence of an inverse association between plasma high-density lipoprotein (HDL) cholesterol concentrations and the risk of cardiovascular disease, a finding that has led to the hypothesis that HDL protects from atherosclerosis. This review details the experimental evidence for this “HDL hypothesis”. In vitro studies suggest that HDL has a wide range of anti-atherogenic properties but validation of these functions in humans is absent to date. A significant number of animal studies and clinical trials support an atheroprotective role for HDL; however, most of these findings were obtained in the context of marked changes in other plasma lipids. Finally, genetic studies in humans have not provided convincing evidence that HDL genes modulate cardiovascular risk. Thus, despite a wealth of information on this intriguing lipoprotein, future research remains essential to prove the HDL hypothesis correct.  相似文献   
30.
Uptake of modified lipoproteins by macrophages results in the formation of foam cells. We investigated how foam cell formation affects the inflammatory response of macrophages. Murine bone marrow-derived macrophages were treated with oxidized LDL (oxLDL) to induce foam cell formation. Subsequently, the foam cells were activated with lipopolysaccharide (LPS), and the expression of lipid metabolism and inflammatory genes was analyzed. Furthermore, gene expression profiles of foam cells were analyzed using a microarray. We found that prior exposure to oxLDL resulted in enhanced LPS-induced tumor necrosis factor (TNF) and interleukin-6 (IL-6) gene expression, whereas the expression of the anti-inflammatory cytokine IL-10 and interferon-beta was decreased in foam cells. Also, LPS-induced cytokine secretion of TNF, IL-6, and IL-12 was enhanced, whereas secretion of IL-10 was strongly reduced after oxLDL preincubation. Microarray experiments showed that the overall inflammatory response induced by LPS was enhanced by oxLDL loading of the macrophages. Moreover, oxLDL loading was shown to result in increased nuclear factor-kappaB activation. In conclusion, our experiments show that the inflammatory response to LPS is enhanced by loading of macrophages with oxLDL. These data demonstrate that foam cell formation may augment the inflammatory response of macrophages during atherogenesis, possibly in an IL-10-dependent manner.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号