首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2111篇
  免费   124篇
  国内免费   97篇
  2023年   25篇
  2022年   50篇
  2021年   95篇
  2020年   56篇
  2019年   57篇
  2018年   59篇
  2017年   53篇
  2016年   71篇
  2015年   144篇
  2014年   113篇
  2013年   148篇
  2012年   193篇
  2011年   180篇
  2010年   103篇
  2009年   70篇
  2008年   124篇
  2007年   98篇
  2006年   84篇
  2005年   76篇
  2004年   57篇
  2003年   65篇
  2002年   43篇
  2001年   57篇
  2000年   38篇
  1999年   51篇
  1998年   16篇
  1997年   13篇
  1996年   13篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   20篇
  1991年   15篇
  1990年   20篇
  1989年   22篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1983年   3篇
  1979年   3篇
  1978年   5篇
  1975年   3篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1967年   2篇
  1966年   2篇
  1956年   2篇
排序方式: 共有2332条查询结果,搜索用时 15 毫秒
191.
A novel ternary complex, TbL5L′(ClO4)3·3H2O, two binary complexes, TbL7(ClO4)3·3H2O and TbL′3.5(ClO4)3·4H2O has been synthesized (using diphenyl sulphoxide as the first ligand L, bipyridine as the second ligand L′). Their composition was analysed by element analysis, coordination titration, IR spectra and 1H‐NMR, and the fluorescence emission mechanism, fluorescence intensities and phosphorescence spectra were also investigated by comparison. It was shown that the ternary rare‐earth complex showed stronger fluorescence intensities than the binary rare‐earth complexes in such material. The strongest characteristic fluorescence emission intensity of the ternary system was 8.23 times, 3.58 times as strong as that of the binary systems TbL7(ClO4)3·3H2O and TbL′3.5 (ClO4)3·4H2O, respectively. By fluorescence analysis it was found that both diphenyl sulphoxide and bipyridine could sensitize the fluorescence intensities of rare‐earth ions. In particular, in the ternary rare‐earth complex, introduction of bipyridine was of benefit to the fluorescence properties of Tb(III). Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
192.
Maintenance of genomic integrity is essential for cell survival, and genomic instability is a commonly recognized intrinsic property of all cancers. Microsatellite instability (MSI) represents a frequently occurring and easily traceable simple form of sequence variation, signified by the contraction or expansion of specific DNA sequences containing short tandem repeats. MSI is frequently detected in tumor cells with DNA mismatch repair (MMR) deficiency. It is commonly conceived that instability at individual microsatellite loci can arise spontaneously in cells independent of MMR status, and different microsatellite loci are generally not affected uniformly by MMR deficiency. It is well recognized that MMR deficiency per se is not sufficient to initiate tumorigenesis; rather, the biological effects have to be exerted by mutations in genes controlling cell survival, DNA damage response, and apoptosis. Recently, shortening of an intronic hMRE11 poly(T)11 tract has been associated with MMR deficiency, raising the possibility that hMRE11 may be inactivated by defective MMR. However, the molecular nature underlying this association is presently unknown, and review of the current literature suggests that hMRE11 is most likely involved with the MMR pathway in a more complex fashion than simply being a MMR target gene. An alternative scenario is proposed to better reconcile the differences among various studies. The potential role of hMRE11 in telomere repeats stability is also discussed.  相似文献   
193.
On basis of fruit differential respiration and ethylene effects, climacteric and non-climacteric fruits have been classically defined. Over the past decades, the molecular mechanisms of climacteric fruit ripening were abundantly described and found to focus on ethylene perception and signaling transduction. In contrast, until our most recent breakthroughs, much progress has been made toward understanding the signaling perception and transduction mechanisms for abscisic acid (ABA) in strawberry, a model for non-climacteric fruit ripening. Our reports not only have provided several lines of strong evidences for ABA-regulated ripening of strawberry fruit, but also have demonstrated that homology proteins of Arabidopsis ABA receptors, including PYR/PYL/RCAR and ABAR/CHLH, act as positive regulators of ripening in response to ABA. These receptors also trigger a set of ABA downstream signaling components, and determine significant changes in the expression levels of both sugar and pigment metabolism-related genes that are closely associated with ripening. Soluble sugars, especially sucrose, may act as a signal molecular to trigger ABA accumulation through an enzymatic action of 9-cis-epoxycarotenoid dioxygenase 1 (FaNCED1). This mini-review offers an overview of these processes and also outlines the possible, molecular mechanisms for ABA in the regulation of strawberry fruit ripening through the ABA receptors.  相似文献   
194.
Eimeria spp. are a highly successful group of intracellular protozoan parasites that develop within intestinal epithelial cells of poultry, causing coccidiosis. As a result of resistance against anticoccidial drugs and the expense of manufacturing live vaccines, it is necessary to understand the relationship between Eimeria and its host more deeply, with a view to developing recombinant vaccines. Eimeria possesses a family of microneme lectins (MICs) that contain microneme adhesive repeat regions (MARR). We show that the major MARR protein from Eimeria tenella, EtMIC3, is deployed at the parasite-host interface during the early stages of invasion. EtMIC3 consists of seven tandem MAR1-type domains, which possess a high specificity for sialylated glycans as shown by cell-based assays and carbohydrate microarray analyses. The restricted tissue staining pattern observed for EtMIC3 in the chicken caecal epithelium indicates that EtMIC3 contributes to guiding the parasite to the site of invasion in the chicken gut. The microarray analyses also reveal a lack of recognition of glycan sequences terminating in the N-glycolyl form of sialic acid by EtMIC3. Thus the parasite is well adapted to the avian host which lacks N-glycolyl neuraminic acid. We provide new structural insight into the MAR1 family of domains and reveal the atomic resolution basis for the sialic acid-based carbohydrate recognition. Finally, a preliminary chicken immunization trial provides evidence that recombinant EtMIC3 protein and EtMIC3 DNA are effective vaccine candidates.  相似文献   
195.
196.
Diel migration is a common predator avoidance mechanism commonly found in temperate water bodies and increasingly in tropical systems. Previous research with only single day and night samples suggested that the endemic shrimp, Halocaridina rubra, may exhibit diel migration in Hawaiian anchialine pools to avoid predation by introduced mosquito fish, Gambusia affinis, and perhaps reverse migration to avoid the predatory invasive Tahitian prawn, Macrobrachium lar. To examine this phenomenon in greater detail, we conducted a diel study of H. rubra relative abundance and size at 2-h intervals in three anchialine pools that varied in predation regime on the Kona-Kohala Coast of Hawai‘i Island. We found two distinct patterns of diel migration. In two pools dominated by visually feeding G. affinis, the abundance of H. rubra present on the pool bottom or swimming in the water column was very low during the day, increased markedly at sunset and remained high until dawn. In contrast, in a pool dominated by the nocturnal predator M. lar, H. rubra density was significantly lower during the night than during the day (i.e., a pattern opposite to that of shrimp in pools containing fish). In addition, we observed that the mean body size of the shrimp populations varied among pools depending upon predator type and abundance, but did not vary between day and night in any pools. Our results are consistent with the hypothesis that H. rubra diel migratory behavior and size distributions are influenced by predation regime and suggest that diel migration may be a flexible strategy for predator avoidance in tropical pools where it may be a significant adaptive response of endemic species to introduced predators.  相似文献   
197.
198.
Mahalingam D  Tay LL  Tan WH  Chai JH  Wang X 《The FEBS journal》2011,278(19):3724-3738
Mutant template human telomerase RNAs (MT-hTers) have been shown to induce apoptosis in various cancer cells with high telomerase activity. However, the mechanism by which MT-hTers inhibit the growth of cancer cells and their effects on normal cells remain unknown. To determine the effects of MT-hTers on normal cells, MT-hTer-47A and -AU5 were introduced into IMR90 lung fibroblasts, which have low telomerase levels. Growth of IMR90 cells after MT-hTers infection was not significantly impaired; however, similar treatments in telomerase-overexpressing IMR90 [IMR90 wild-type (WT)hTERT] cells inhibited cell proliferation and induced apoptosis. Confocal microscopy showed that MT-hTers induced DNA damage foci (i.e. 53BP1 and γ-H2AX) in IMR90 WThTERT cells. Microarray analysis revealed that GADD45γ was significantly elevated in MT-hTer-treated IMR90 WThTERT cells. MT-hTers also induced ATM phosphorylation at Ser1981 in IMR90 WThTERT cells, and western blot analysis revealed high levels of phosphorylated p53 after the down-regulation of cellular TRF2 expression in MT-hTer-treated IMR90 WThTERT cells. Taken together, we have shown that MT-hTers induce double-stranded DNA break-like damages in telomerase positive IMR90 WThTERT cells after phosphorylation of ATM and p53 via suppression of TRF2, which may eventually lead to apoptosis via elevation of GADD45γ.  相似文献   
199.
Recent studies suggest that the therapeutic effects of stem cell transplantation following myocardial infarction (MI) are mediated by paracrine factors. One of the main goals in the treatment of ischemic heart disease is to stimulate vascular repair mechanisms. Here, we sought to explore the therapeutic angiogenic potential of mesenchymal stem cell (MSC) secretions. Human MSC secretions were collected as conditioned medium (MSC-CM) using a clinically compliant protocol. Based on proteomic and pathway analysis of MSC-CM, an in vitro assay of HUVEC spheroids was performed identifying the angiogenic properties of MSC-CM. Subsequently, pigs were subjected to surgical left circumflex coronary artery ligation and randomized to intravenous MSC-CM treatment or non-CM (NCM) treatment for 7 days. Three weeks after MI, myocardial capillary density was higher in pigs treated with MSC-CM (645 ± 114 vs 981 ± 55 capillaries/mm(2); P = 0.021), which was accompanied by reduced myocardial infarct size and preserved systolic and diastolic performance. Intravenous MSC-CM treatment after myocardial infarction increases capillary density and preserves cardiac function, probably by increasing myocardial perfusion.  相似文献   
200.
Reasons for the progressive age-related loss of skeletal muscle mass and function, namely sarcopenia, are complex. Few studies describe sarcopenia in mice, although this species is the mammalian model of choice for genetic intervention and development of pharmaceutical interventions for muscle degeneration. One factor, important to sarcopenia-associated neuromuscular change, is myofibre denervation. Here we describe the morphology of the neuromuscular compartment in young (3 month) compared to geriatric (29 month) old female C57Bl/6J mice. There was no significant difference in the size or number of motoneuron cell bodies at the lumbar level (L1-L5) of the spinal cord at 3 and 29 months. However, in geriatric mice, there was a striking increase (by ~2.5 fold) in the percentage of fully denervated neuromuscular junctions (NMJs) and associated deterioration of Schwann cells in fast extensor digitorum longus (EDL), but not in slow soleus muscles. There were also distinct changes in myofibre composition of lower limb muscles (tibialis anterior (TA) and soleus) with a shift at 29 months to a faster phenotype in fast TA muscle and to a slower phenotype in slow soleus muscle. Overall, we demonstrate complex changes at the NMJ and muscle levels in geriatric mice that occur despite the maintenance of motoneuron cell bodies in the spinal cord. The challenge is to identify which components of the neuromuscular system are primarily responsible for the marked changes within the NMJ and muscle, in order to selectively target future interventions to reduce sarcopenia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号