首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2103篇
  免费   124篇
  国内免费   97篇
  2023年   22篇
  2022年   47篇
  2021年   95篇
  2020年   56篇
  2019年   57篇
  2018年   59篇
  2017年   53篇
  2016年   71篇
  2015年   144篇
  2014年   113篇
  2013年   148篇
  2012年   193篇
  2011年   180篇
  2010年   103篇
  2009年   70篇
  2008年   124篇
  2007年   98篇
  2006年   84篇
  2005年   76篇
  2004年   57篇
  2003年   65篇
  2002年   43篇
  2001年   57篇
  2000年   38篇
  1999年   51篇
  1998年   16篇
  1997年   13篇
  1996年   13篇
  1995年   12篇
  1994年   10篇
  1993年   7篇
  1992年   20篇
  1991年   15篇
  1990年   20篇
  1989年   22篇
  1988年   6篇
  1987年   5篇
  1986年   6篇
  1985年   6篇
  1983年   3篇
  1979年   3篇
  1978年   5篇
  1975年   3篇
  1974年   3篇
  1972年   3篇
  1971年   3篇
  1970年   5篇
  1967年   2篇
  1966年   2篇
  1956年   2篇
排序方式: 共有2324条查询结果,搜索用时 953 毫秒
141.
We have screened 11 isoquinoline derivatives and α-methylene-γ-butyrolactones using the 3-(4,5-dimethylthi-azol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) cytotoxicity assay in HeLa and HEK-293T cells. Compound 2 was identified as potential anticancer agent. To further improve its therapeutic potential, this agent was incorporated into transferrin (Tf)-conjugated liposomes (LPs) for targeted delivery to tumor cells. We have demonstrated Tf-LP-Compound 2 have superior antitumor activity compared to non-targeted controls and the free drug. These data show Tf-LP-Compound 2 to be a promising agent that warrants further evaluation.  相似文献   
142.
Telomeric G‐overhangs are required for the formation of the protective telomere structure and telomerase action. However, the mechanism controlling G‐overhang generation at human telomeres is poorly understood. Here, we show that G‐overhangs can undergo cell cycle‐regulated changes independent of telomerase activity. G‐overhangs at lagging telomeres are lengthened in S phase and then shortened in late S/G2 because of C‐strand fill‐in, whereas the sizes of G‐overhangs at leading telomeres remain stable throughout S phase and are lengthened in G2/M. The final nucleotides at measurable C‐strands are precisely defined throughout the cell cycle, indicating that C‐strand resection is strictly regulated. We demonstrate that C‐strand fill‐in is mediated by DNA polymerase α (polα) and controlled by cyclin‐dependent kinase 1 (CDK1). Inhibition of CDK1 leads to accumulation of lengthened G‐overhangs and induces telomeric DNA damage response. Furthermore, depletion of hStn1 results in elongation of G‐overhangs and an increase in telomeric DNA damage. Our results suggest that G‐overhang generation at human telomeres is regulated by multiple tightly controlled processes and C‐strand fill‐in is under the control of polα and CDK1.  相似文献   
143.
144.
A chemical investigation of the roots of Triosteum pinnatifidum led to the isolation of 10 iridoids, elucidated as triohimas A–C, naucledal, secologanin dimethyl acetal, grandifloroside, sweroside, loganin, vogeloside and (E)-aldosecologanin. Most of the compounds were derived from loganin or secologanin with a glucose moiety at C-1 position. The results indicate a close relationship between the two genera Triosteum and Lonicera, and support the viewpoint that the iridoids derived from loganin or secologanin could be the chemotaxonomic markers of the Caprifoliaceae family.  相似文献   
145.
In eukaryotes, eRF3 participates translation termination and belongs to the superfamily of GTPase. In this work, dissociation constants for E. octocarinatus eRF3 binding to nucleosides in presence and absence of eRF1a were determined using fluorescence spectra methods. Furthermore, the GTP hydrolyzing assay of Eo-eRF3 was carried out by HPLC methods and the kinetic parameter for GTP hydrolysis by eRF3 was determined. The results showed eRF1a could promote GTP binding to eRF3 and hydrolyzing GTP activity of eRF3. The observation is consistent with the data from human. Whereas E. octocarinatus eRF3 alone can bind GTP in contrast to no GTP binding observed in the absence of eRF1 in human eRF3. The affinity for Eo-eRF3 binding nucleotides is different from that in human. Structure model and amino acids sequence alignment of potential G domains indicated these different may be due to Valine 317 and Glutamate 452 displacing conserved Glycine and Lysine, which were involved in GTP binding.  相似文献   
146.
During normal metaphase in Saccharomyces cerevisiae, chromosomes are captured at the kinetochores by microtubules emanating from the spindle pole bodies at opposite poles of the dividing cell. The balance of forces between the cohesins holding the replicated chromosomes together and the pulling force from the microtubules at the kinetochores result in the biorientation of the sister chromatids before chromosome segregation. The absence of kinetochore–microtubule interactions or loss of cohesion between the sister chromatids triggers the spindle checkpoint which arrests cells in metaphase. We report here that an MEN mutant, cdc15-2, though competent in activating the spindle assembly checkpoint when exposed to Noc, mis-segregated chromosomes during recovery from spindle checkpoint activation. cdc15-2 cells arrested in Noc, although their Pds1p levels did not accumulate as well as in wild-type cells. Genetic analysis indicated that Pds1p levels are lower in a mad2Δ cdc15-2 and bub2Δ cdc15-2 double mutants compared with the single mutants. Chromosome mis-segregation in the mutant was due to premature spindle elongation in the presence of unattached chromosomes, likely through loss of proper control on spindle midzone protein Slk19p and kinesin protein, Cin8p. Our data indicate that a slower rate of transition through the cell division cycle can result in an inadequate level of Pds1p accumulation that can compromise recovery from spindle assembly checkpoint activation.  相似文献   
147.
Few regulators of phenylpropanoids have been identified in monocots having potential as biofuel crops. Here we demonstrate the role of the maize (Zea mays) R2R3-MYB factor ZmMYB31 in the control of the phenylpropanoid pathway. We determined its in vitro consensus DNA-binding sequence as ACC(T)/(A) ACC, and chromatin immunoprecipitation (ChIP) established that it interacts with two lignin gene promoters in vivo. To explore the potential of ZmMYB31 as a regulator of phenylpropanoids in other plants, its role in the regulation of the phenylpropanoid pathway was further investigated in Arabidopsis thaliana. ZmMYB31 downregulates several genes involved in the synthesis of monolignols and transgenic plants are dwarf and show a significantly reduced lignin content with unaltered polymer composition. We demonstrate that these changes increase cell wall degradability of the transgenic plants. In addition, ZmMYB31 represses the synthesis of sinapoylmalate, resulting in plants that are more sensitive to UV irradiation, and induces several stress-related proteins. Our results suggest that, as an indirect effect of repression of lignin biosynthesis, transgenic plants redirect carbon flux towards the biosynthesis of anthocyanins. Thus, ZmMYB31 can be considered a good candidate for the manipulation of lignin biosynthesis in biotechnological applications.  相似文献   
148.
149.
Adventitious roots were induced from shoots and leaves of the chimera plant TCC (LI-LII-LIII = TCC; T = Tuber mustard, C = Red Cabbage), previously developed by in vitro grafting of tuber mustard (Brassica juncea) and red cabbage (B. oleracea). The regeneration frequency of adventitious roots from TCC shoots and leaf sections was markedly higher than that obtained from the parents TTT (tuber mustard) and CCC (red cabbage). Moreover, levels of α-naphthaleneacetic acid in the culture medium had lower effects on rooting efficiency of TCC chimeras compared to those of TTT and CCC. The number and fresh weight of adventitious roots per TCC shoot, 13.11 roots and 0.274 g, respectively, were also significantly higher than those of the parents. This demonstrated that replacing the histogenic LI layer (the outermost apical cell layer) with a different genotype might improve adventitious root induction capability of these vegetative tissues due to likely synergistic effects between LI and the other two histogenic layers, LII and LIII. Following polymerase chain reaction analysis and histological investigation, it was found that these adventitious roots originated from the LIII histogenic layer.  相似文献   
150.
Toxoplasma gondii KI-1, a recent new isolate from Korea, shows similar pathogenicity and infectivity to mice compared to the virulent RH strain. To understand characteristics of host immunity, including immune enhancement or suppression, we investigated proliferative responses and phenotypes of spleen cells. In addition, kinetics of IFN-γ, a Th1 cytokine, was examined in BALB/c mice up to day 6 post-infection (PI). Intraperitoneal injection of mice with 10(3) KI-1 tachyzoites induced significant decreases (P < 0.05) in proliferative responses of spleen cells. This occurred at days 2-6 PI even when concanavalin A (con A) was added and when stimulated with KI-1 antigen, suggesting suppression of the immunity. CD4(+) T-cells decreased markedly at day 2 PI (P < 0.05), whereas CD8(+) T-cells, NK cells, and macrophages did not show significant changes, except a slight, but significant, increase of CD8(+) T-cells at day 6 PI. The capacity of splenocytes to produce IFN-γ by con A stimulation dropped significantly at days 2-6 PI. These results demonstrate that intraperitoneal injection of KI-1 tachyzoites can induce immunosuppression during the early stage of infection, as revealed by the decrease of CD4(+) T-cells and IFN-γ.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号