首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   195篇
  免费   25篇
  国内免费   1篇
  2023年   2篇
  2022年   3篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   7篇
  2016年   6篇
  2015年   8篇
  2014年   5篇
  2013年   5篇
  2012年   8篇
  2011年   6篇
  2010年   2篇
  2009年   6篇
  2008年   6篇
  2007年   5篇
  2006年   14篇
  2005年   10篇
  2004年   6篇
  2003年   10篇
  2002年   8篇
  2001年   10篇
  2000年   4篇
  1999年   5篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   5篇
  1991年   2篇
  1989年   2篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1985年   4篇
  1984年   2篇
  1983年   5篇
  1981年   4篇
  1979年   3篇
  1978年   2篇
  1977年   4篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1971年   2篇
  1968年   1篇
  1967年   1篇
  1954年   1篇
排序方式: 共有221条查询结果,搜索用时 31 毫秒
101.
102.
Gouhier TC  Menge BA  Hacker SD 《Ecology letters》2011,14(12):1201-1210
Although positive species interactions are ubiquitous in nature, theory has generally focused on the role of negative interactions to explain patterns of species diversity. Here, we incorporate recruitment facilitation, a positive interaction prevalent in marine and terrestrial systems, into a metacommunity framework to assess how the interplay between colonisation, competition and facilitation mediates coexistence. We show that when subordinate species facilitate the recruitment of dominant species, multi-species metacommunities can persist stably even if the colonisation rate of the dominant species is greater than that of the subordinate species. In addition, recruitment facilitation can buffer population growth from changes in colonisation rates, and thus explain the paradoxical mismatch between patterns of abundance and recruitment in marine systems. Overall, our results demonstrate that recruitment facilitation can have profound effects on the assembly, dissolution and regulation of metacommunities by mediating the relative influence of local and regional processes on population abundance and species diversity.  相似文献   
103.
Human activity is drastically altering global nitrogen (N) availability. The extent to which ecosystems absorb additional N—and with it, additional CO2—depends on whether net primary production (NPP) is N-limited, so it is important to understand conditions under which N can limit NPP. Here I use a general dynamical model to show that N limitation at steady-state—such as in old-growth forests—depends on the balance of biotically controllable versus uncontrollable N inputs and losses. Steady-state N limitation is only possible when uncontrollable inputs (for example, atmospheric deposition) exceed controllable losses (for example, leaching of plant-available soil N), which is the same as when uncontrollable losses (for example, leaching of plant-unavailable soil N) exceed controllable inputs (biological N fixation). These basic results are robust to many model details, such as the number of plant-unavailable soil N pools and the number and type of N fixers. Empirical data from old-growth tropical (Hawai’i) and temperate (Oregon, Washington, Chile) forests support the model insights. Practically, this means that any N fixer—symbiotic or not—could overcome ecosystem N limitation, so understanding N limitation requires understanding controls on all N fixers. Further, comparing losses of plant-available N to abiotic inputs could offer a rapid diagnosis of whether ecosystems can be N-limited, although the applicability of this result is constrained to ecosystems with a steady-state N cycle such as old-growth forests largely devoid of disturbance.  相似文献   
104.
The effects of predation by a diverse assemblage of consumers on community structure of sessile prey was evaluated in the low rocky intertidal zone at Taboguilla Island in the Bay of Panama. Four functional groups of consumers were defined: (1) large fishes, (2) small fishes and crabs, (3) herbivorous molluscs, and (4) predaceous gastropods, (l) and (2) included fast-moving consumers and (3) and (4) included slow-moving consumers. Experimental treatments were: no consumers deleted (all groups present), most combinations of deletions of single groups (i.e., one group absent, three present), pairs of groups deleted (two absent, two present), trios of groups deleted (three absent, one present), and the entire consumer assemblage deleted (all groups absent). Changes in abundance (percent cover) of crustose algae, solitary sessile invertebrates, foliose algae, and colonial sessile invertebrates were quantified periodically in 2–4 plots of each treatment from February 1977 to January 1980 after the initiation of the experiment in January 1977.

Space on this shore is normally dominated by crustose algae; foliose algae, solitary sessile invertebrates, and colonial sessile invertebrates are all rare. After deletion of all consumers, ephemeral green algae increased from 0 to nearly 70% cover. Thereafter, a succession of spatial dominants occurred, with peak abundances as follows: the foliose coralline alga Jania spp. by July 1977, the barnacle Balanus inexpectatus by April 1978, and the rock oyster Chama echinata by January 1980. Although no longer occupying primary rock space, Jania persisted as a dominant or co-dominant turf species (with the brown alga Giffordia mitchelliae and/or the hydrozoan Abietinaria sp.) by colonizing shells of sessile animals as they became abundant instead of the rock surface.

Multivariate analysis variance (MANOVA) indicated that the effect of each group was as follows. Molluscan herbivores grazed foliose algae down to the grazer-resistant, but competitively inferior algal crusts, altered the relative abundances of the crusts, and inhibited recruitment of sessile invertebrates. Predaceous gastropods reduced the abundance of solitary sessile animals. Small fishes and crabs, and large fishes reduced the cover of solitary and colonial sessile animals and foliose algae, although they were incapable of grazing the foliose algae down to the rock surface. Many of the effects of each consumer group on prey groups or species were indirect; some effects were positive and some were negative. The variety of these indirect effects was due to both consumer-prey interactions among the consumers, and competitive or commensalistic interactions among the sessile prey. Comparison of the sum of the effects of each of the single consumer groups (i.e., the sum of the effect observed in treatments with one group absent, three present) with the total effects of all consumers (i.e., the effect observed in the treatment with all groups absent) indicates that a “keystone” consumer was not present in this community. Rather, the impacts of the consumer groups were similar but, due to dietary overlap and compensatory changes among the consumers, not readily detected in deletions of single consumer groups. The normally observed dominance of space by crustose algae is thus maintained by persistent, intense predation by a diverse assemblage of consumers on potentially dominant sessile animals and foliose algae. The large difference in structure between this and temperate intertidal communities seems due to differences in degree, not kind of ecological processes which produce the structure.  相似文献   

105.
Striking differences in the dispersal of coexisting species have fascinated marine ecologists for decades. Despite widespread attention to the impact of dispersal on individual species dynamics, its role in species interactions has received comparatively little attention. Here, we approach the issue by combining analyses of simple heuristic predator-prey models with different dispersal patterns and data from several predator-prey systems from the Pacific coasts of North and South America. In agreement with model predictions, differences in predator dispersal generated characteristic biogeographic patterns. Predators lacking pelagic larvae tracked geographic variation in prey recruitment but not prey abundance. Prey recruitment rate alone explained more than 80% of the biogeographic variation in predator abundance. In contrast, predators with broadcasting larvae were uncorrelated with prey recruitment or adult prey abundance. Our findings reconcile perplexing results from previous studies and suggest that simple models can capture some of the complexity of life-history diversity in marine communities.  相似文献   
106.
Seaweeds experience many challenges to their persistence in intertidal zone habitats. Their growth rates must exceed losses associated with a range of ecological and physiological factors including desiccation, herbivory and wave forces. Growth rates depend on an alga's ability to capture and process light to build carbon-based molecules. We examined local (tidal height) and large (oceanographic) scale influences on algal photosynthetic efficiency and light climate, respectively. At the local scale, we combined periodic measurements of physiological state using PAM fluorometry with traditional demographic monitoring of a Postelsia palmaeformis , population over a tidal height gradient. Parameter estimates derived from rapid fluorescence-irradiance curves were correlated with longer-term ecological performance measures including growth rate, morphology, survivorship and reproductive output. At larger scales, we made continuous in situ measurements of chlorophyll fluorescence and light attenuation in the intertidal zone at six sites during 2001 and 2002. Light attenuation to the benthos was sharply reduced at sites when chl-a fluorescence was high. Long-term, large-scale monitoring of intertidal zone chl-a and macroalgal abundances documents that striking differences among sites are persistent and associated with oceanographic factors. The light saturation parameter and maximum photosynthetic rate calculated for several common intertidal macrophytes, along with published values of the irradiance needed to saturate their growth rates, suggest that underwater light levels may limit intertidal algal growth where phytoplankton blooms are common and persistent. We conclude that physiological stress associated with tidal and oceanographic factors contribute to macroalgal distributions.  相似文献   
107.
Previous studies have demonstrated that clobenpropit (N-(4-chlorobenzyl)-S-[3-(4(5)-imidazolyl)propyl]isothiourea) binds to both the human histamine H3 receptor (H3R) and H4 receptor (H4R). In this paper, we describe the synthesis and pharmacological characterization of a series of clobenpropit analogs, which vary in the functional group adjacent to the isothiourea moiety in order to study structural requirements for H3R and H4R ligands. The compounds show moderate to high affinity for both the human H3R and H4R. Furthermore, the changes in the functional group attached to the isothiourea moiety modulate the intrinsic activity of the ligands at the H4R, ranging from neutral antagonism to full agonism. QSAR models have been generated in order to explain the H3R and H4R affinities.  相似文献   
108.
109.
The rarity of nitrogen (N)‐fixing trees in frequently N‐limited higher‐latitude (here, > 35°) forests is a central biogeochemical paradox. One hypothesis for their rarity is that evolutionary constraints limit N‐fixing tree diversity, preventing N‐fixing species from filling available niches in higher‐latitude forests. Here, we test this hypothesis using data from the USA and Mexico. N‐fixing trees comprise only a slightly smaller fraction of taxa at higher vs. lower latitudes (8% vs. 11% of genera), despite 11‐fold lower abundance (1.2% vs. 12.7% of basal area). Furthermore, N‐fixing trees are abundant but belong to few species on tropical islands, suggesting that low absolute diversity does not limit their abundance. Rhizobial taxa dominate N‐fixing tree richness at lower latitudes, whereas actinorhizal species do at higher latitudes. Our results suggest that low diversity does not explain N‐fixing trees' rarity in higher‐latitude forests. Therefore, N limitation in higher‐latitude forests likely results from ecological constraints on N fixation.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号